Analízis 1 képsor tartalma:

Exponenciális függvény, Exponenciális azonosságok, Exponenciális egyenletek, Az e szám, A középiskolás matek felelevenítése.

A képsor tartalma

Most pedig itt az ideje, hogy újabb függvényekkel ismerkedjünk meg.

A következő képsorban már jönnek is az exponenciális függvények.

Ez exponenciális függvényekkel való ismerkedésünket kezdjük az alapokkal, a hatványazonosságokkal.

Hatványozni jó dolog és így kezdetben bőven elég annyit tudni, hogy

de semmi ördögi nem lesz itt.

Az első hatványazonosság azzal fog foglalkozni, hogy mi történik, ha megszorozzuk ezt mondjuk azzal, hogy 62.

Hát nézzük meg.

Nos ha ezeket összeszorozzuk, akkor

a kitevők összeadódnak.

Ez lesz az első azonosság.

HATVÁNYAZONOSSÁGOK

Most nézzük meg mi történik, ha ezeket elosztjuk egymással.

De azért van itt egy apró kellemetlenség.

Már jön is.

Nos amikor a nevező kitevője nagyobb, ilyenkor az eredmény egy tört.

Itt pedig a kitevő negatív lesz.

Most lássuk, hogyan kell hatványt hatványozni.

Nos így:

A kitevőket kell összeszoroznunk.

Itt van aztán ez, hogy

Na ez vajon mi lehet?

Nézzük meg mi történik ha alkalmazzuk rá a legújabb azonosságunkat.

Vagyis ez valami olyan, amit ha négyzetre emelünk, akkor 9-et kapunk.

Ilyen éppenséggel van, ezt hívjuk -nek.

A törtkitevő tehát gyökvonást jelent.

Az előbbi két azonosságot kicsit továbbfejlesztve kapunk egy harmadikat.

Ha van egy ilyen, hogy

nos akkor ezen ki is próbálhatjuk ezt a képletet.

Jön itt még néhány újabb képlet,

de most már lássuk a függvényeket.

Így néz ki a 2x függvény. Ez pedig a 3x.

Ha az alap egy 2 és 3 közti szám, akkor a függvény a 2x és a 3x között van.

Például egy ilyen szám a

2,71828182845904523536028747135266249775724709369995…

Ez a szám mágikus jelentőséggel bír a matematikában és az egyszerűség kedvéért elnevezték e-nek.

Ez a függvény tehát az ex.

Az összes 1-nél nagyobb alapú exponenciális függvény valahogy így néz ki.

Ha az alap 1-nél kisebb, nos az egy másik állatfajta.

Az exponenciális függvények és a hatványazonosságok

03
 
Itt jön egy fantasztikus
Analízis 1 képsor.

Hozzászólások

Még nincs hozzászólás. Legyél Te az első!