Analízis 1 képsor tartalma:

Logaritmus függvény, Logaritmikus egyenletek, Logaritmus azonosságok, Hogyan oldjunk meg logaritmusos egyenleteket, Hogyan oldjunk meg exponenciális egyenleteket?

A képsor tartalma

Színre lép a logaritmus

És most egy új szereplő lép színre, a logaritmus.

Nos ez a logaritmus egy nagyon remek dolog, de kis magyarázatot igényel.

Mindössze arról van szó, hogy azt mondja meg, a-t hányadik hatványra kell emelni ahhoz, hogy x-et kapjunk.

Itt van például ez:

Ez azt jelenti, hogy 2-t hányadik hatványra kell emelnünk, hogy 8-at kapjunk.

Nos 23=8, tehát a válasz…

Vagy nézzük meg ezt:

Nos lássuk csak

Itt jön aztán egy nehezebb ügy:

A kérdés az, hogyan lesz a 8-ból 2. Az elosztjuk 4-gyel ugye nem jó válasz, mert valami hatványozás kell ide.

A jó válasz:

Próbáljuk meg kitalálni, mennyi lehet ez:

A kérdés, 8 a hányadikon a 16.

Nos ami a 8-ban és a 16-ban közös, az a 2, mert 23=8 és 24=16.

Így aztán úgy jutunk el a 8-ból a 16-hoz, hogy előbb a 8-ból csinálunk 2-t,

utána pedig a 2-ből 16-ot.

Mindezek után már nem jelenthet gondot ez sem:

Sőt ez sem:

Most pedig lássuk a logaritmusos azonosságokat.

LOGARITMUS AZONOSSÁGOK

A logaritmus egyik legnagyobb haszna az, hogy képesek vagyunk megoldani az ilyen egyenleteket, mint amilyen ez

Mindkét oldalnak vesszük a logaritmusát.

És voila.

Általánosítva, ha van egy ilyen, hogy 

akkor ebből így kapjuk meg x-et.

A megfordítását is jegyezzük meg, ha

akkor így kapjuk meg x-et.

Exponenciális egyenlet megoldása

Logaritmikus egyenlet megoldása

Oldjuk meg például ezeket:

Most pedig lássuk a függvényeket.

Nos a logaritmus csak pozitív x-ekre van értelmezve.

Ha az alap 1-nél nagyobb, akkor a függvény növekszik.

Ha 1-nél kisebb, akkor csökken.

Színre lép a logaritmus

04
 
Itt jön egy fantasztikus
Analízis 1 képsor.

Hozzászólások

Fantasztikus!!! Miért nem így tanítják a mateket? Minden világos és logikus....