Lineáris algebra képsor tartalma:

Diagonális alak, Sajátérték, Sajátvektor, Karakterisztikus egyenlet, Determináns, Sajátérték, Sajátvektor.
 

A képsor tartalma

Ha egy -es mátrixnak van  darab független sajátvektora, akkor létezik a mátrixnak egy úgynevezett diagonális alakja.

A diagonális alak így néz ki:

a főátlóban vannak a sajátértékek és az összes többi elem nulla.

A diagonális alakot a következő módon állítjuk elő:

itt  vagyis egyszerűen úgy keletkezik, hogy a sajátvektorokat fogjuk, és leírjuk egymás mellé.

Nézzünk meg erre egy példát!

Állítsuk elő ennek a -as mátrixnak a diagonális alakját.

1. A KARAKTERISZTIKUS EGYENLET FELÍRÁSA

A főátló elemeiből kivonogatjuk a -kat, és vesszük a determinánsát:

A determinánst az első sora szerint fejtjük ki:

2. A KARAKTERISZTIKUS EGYENLET MEGOLDÁSAI A SAJÁTÉRTÉKEK

Most három sajátérték van, ;  és  .

Mindhárom sajátértékhez megkeressük a hozzá tartozó sajátvektort. 

 3. A SAJÁTÉRTÉKEKHEZ TARTOZÓ SAJÁTVEKTOROK MEGKERESÉSE

 A sajátvektorokat úgy kapjuk meg, ha megoldjuk az  

 egyenletrendszert:

Az egyenletrendszereket bázistranszformációval oldjuk meg.

Akinek a bázistranszformációval kapcsolatos emlékei sajnálatos módon

elhalványultak, az nézze meg az erről szóló részt.

A bázistranszformáció elakadt, -et nem tudjuk lehozni, így elnevezzük –nek.

Leolvassuk a megoldást.

A  sajátértékhez tartozó sajátvektor:

 ahol

Most jöhet a többi sajátvektor. Megint az  egyenletrendszert kell megoldanunk:

Belerakjuk a -t

Bázistranszformációval oldjuk meg:

A  sajátértékhez tartozó sajátvektor:

 ahol

és a -et

Bázistranszformációval oldjuk meg:

A  sajátértékhez tartozó sajátvektor:

 ahol

Úgy tűnik van három független sajátvektor, tehát a mátrix

diagonalizálható, a diagonalizáló mátrix pedig

A diagonális alakot az eredeti mátrixból a diagonalizáló mátrix

segítségével állítjuk elő:

A szorzásokat elvégezni azonban felesleges, mert a diagonális alak mindig úgy néz ki, hogy a főátlóban vannak a sajátértékek, az összes többi elem pedig nulla.

A sajátértékeket már régóta tudjuk        

A diagonális alak tehát:

Mátrixok diagonális alakja

07
 
Hopsz, úgy tűnik nem vagy belépve, pedig itt olyan érdekes dolgokat találsz, mint például:

Diagonális alak, Sajátérték, Sajátvektor, Karakterisztikus egyenlet, Determináns, Sajátérték, Sajátvektor.
 

Itt jön egy fantasztikus
Lineáris algebra képsor.

Hozzászólások

Még nincs hozzászólás. Legyél Te az első!