Alkalmazott matematika 2 | mateking
 
15 témakör, 314 rövid és szuper érthető epizód
Ezt a nagyon laza Alkalmazott matematika 2 kurzust úgy terveztük meg, hogy egy csapásra megértsd a lényeget. Tudásszinttől függetlenül, teljesen az alapoktól magyarázzuk el a tananyagot, a saját ritmusodban lépésről lépésre. Így tudjuk a legbonyolultabb dolgokat is elképesztően egyszerűen elmagyarázni.
3 450 Forint

Tartalomjegyzék: 

A kurzus 15 szekcióból áll: Határozatlan integrálás, primitív függvény, Differenciálegyenletek, Sorok & hatványsorok & Taylor-sorok, Kétváltozós függvények, Kettős és hármas integrál, Kombinatorika, Valszám alapok, klasszikus valszám, Teljes valószínűség tétele, Bayes tétel, Eloszlás, eloszlásfüggvény, sűrűségfüggvény, Geometriai valószínűség, Binomiális tétel, Várható érték és szórás, Markov és Csebisev egyenlőtlenségek, A binomiális eloszlás és a hipergeometriai eloszlás, Nevezetes diszkrét és folytonos eloszlások, Kétváltozós eloszlások

Határozatlan integrálás, primitív függvény

Differenciálegyenletek

Sorok & hatványsorok & Taylor-sorok

Kétváltozós függvények

  • -

    A kétváltozós függvények úgy működnek, hogy két valós számhoz rendelnek hozzá egy harmadik valós számot.

  • -

    A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.

  • -

    A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.

  • -

     másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen nyeregpontja van-e.

  • -

    Egy általános módszer, amivel kétváltozós függvények szélsőértékeit és nyeregpontjait lehet meghatározni

  • -

    Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.

  • -

    Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.

  • -

    A sík azon pontjainak összességét, amelyekben az $f$ függvény ugyanazt a konstans értéket veszi fel, az $f$ függvény szintvonalának nevezzük.

  • -

    Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ez esetben most egy sík lesz az érintő.

  • -

    A parciális deriváltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.

  • -

    Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.

  • -

    Egy függvény akkor implicit, ha $y$ nincs kifejezve, vagyis nem $y=\dots$ alakú.

  • -

    Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.

Kettős és hármas integrál

Kombinatorika

  • -

    Ismétlés nélküli kombinációról akkor beszélünk, ha n különböző elem közül kiválasztunk k db.-ot úgy, hogy a kiválasztott elemek sorrendjére nem vagyunk tekintettel.

  • -

    Egy adott n elemű halmaz elemeinek egy ismétlés nélküli permutációján az n különböző elem egy sorba rendezését értjük.

  • -

    Ismétlés nélküli variációról akkor beszélünk, ha n különböző elem közül kiválasztunk k db.-ot úgy, hogy a kiválasztott elemek sorrendje is számít.

  • -

    Ismétléses permutációról akkor beszélünk, ha n elem sorrendjére vagyunk kiváncsiak, de ezen elemek között vannak megegyezőek is.

  • -

    Ismétléses variációról akkor beszélünk, ha n különböző elem közül kiválasztunk k db.-ot úgy, hogy a kiválasztott elemek sorrendje is számít és egy elemet többször is választhatunk.

  • -

    Ha kör alakban helyezünk el n különböző elemet és azok sorrendjét vizsgáljuk, akkor ciklikus permutációról beszélünk.

Valszám alapok, klasszikus valszám

  • -

    Eseményeknek nevezzük a valószínűségi kísérlet során bekövetkező lehetséges kimeneteleket.

  • -

    A valószínűség kiszámításának klasszikus modellje az, hogy megszámoljuk hány elemi eseményből áll a vizsgált esemény és ezt elosztjuk az összes elemi esemény számával.

Teljes valószínűség tétele, Bayes tétel

Eloszlás, eloszlásfüggvény, sűrűségfüggvény

Geometriai valószínűség, Binomiális tétel

  • -

    Ha egy esemény előfordulását geometriai alakzat (vonal, síkidom, test) mértékével jellemezzük, akkor geometriai valószínűségről beszélünk.

  • -

    Kéttagú összegek n-edik hatványra emelésének képlete.

Várható érték és szórás

Markov és Csebisev egyenlőtlenségek

Nevezetes diszkrét és folytonos eloszlások

Kétváltozós eloszlások