Jump to navigation

Belépés
  • Elfelejtettem a jelszavam
Regisztráció

mateking

  • Nyitólap
  • Tantárgyak
  • Matek érettségi
  • FAQ
  • Rólunk
Login
  • Középiskolai matek  
  • Analízis 1  
  • Analízis 2  
  • Analízis 3  
  • Lineáris algebra  
  • Valószínűségszámítás  
  • Diszkrét matematika  
  • Statisztika  
 

Analízis 1

  • Komplex számok
  • Vektorok, egyenesek és síkok egyenletei
  • Halmazok, rendezett párok, leképezések
  • Függvények
  • Az inverzfüggvény
  • Sorozatok
  • Küszöbindex és monotonitás
  • Rekurzív sorozatok
  • Sorok
  • Függvények határértéke és folytonossága
  • A határérték precíz definíciója
  • Deriválás
  • Differenciálhatóság vizsgálata és az érintő egyenlete
  • Könnyű függvényvizsgálat és szélsőértékfeladatok
  • Függvényvizsgálat, gazdasági feladatok
  • L’Hospital szabály, Taylor sor, Taylor polinom
  • Határozatlan integrálás, primitív függvény
  • Határozott integrálás
  • Kétváltozós függvények
  • Paraméteres görbék
  • Rémes előzmények

Könnyű függvényvizsgálat és szélsőértékfeladatok

  • Epizódok
  • Feladatok
01
 
A teljes függvényvizsgálat lépései
02
 
Még egy teljes függvényvizsgálat lépései
03
 
Paraméteres feladat függvényvizsgálattal
04
 
Szöveges szélsőérték feladatok megoldása
05
 
Gazdasági szélsőérték feladatok megoldása
06
 
Szöveges szélsőértékfeladat
07
 
FELADAT | Tejes függvényvizsgálat
08
 
FELADAT | Tejes függvényvizsgálat
09
 
FELADAT | Tejes függvényvizsgálat
10
 
FELADAT | Tejes függvényvizsgálat

1. Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.

\( f(x)=x^4 - 4x^3 \)

Megnézem, hogyan kell megoldani


2. Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.

\( f(x)=x^3 - 3x \)

Megnézem, hogyan kell megoldani


3. Határozza meg az $a, b, c$ valós paramétereket úgy, hogy az $f(x)=ax^3+bx^2+cx+28$ függvénynek $x=2$-ben zérushelye, $x=-4$-ben lokális maximumhelye, $x=-1$-ben pedig inflexiós pontja legyen!

Megnézem, hogyan kell megoldani


4.

a) Egy vasúti alagút építése során minél mélyebbre helyezik a nyomvonalat, annál hosszabb alagutat kell fúrni és maga az építkezés is egyre drágább lesz. Az eredetileg kijelölt nyomvonal 340 méteres tengerszintfeletti magasságban halad és az építési költség 5,6 milliárd svájci frank. A nyomvonal $x$ méterrel mélyebbre helyezése az eredeti költséget ennyivel növeli: $a(x)=40x^4+160x^3$ frank.

A mélyebben futó nyomvonalnak az előnye, hogy az áthaladó vonatoknak a hegységben történő átkelés során kisebb szintkülönbséget kell megtenniük. Ennek évenkénti gazdasági haszna: $p(x)=80x^3$ frank.

Hogyha az alagút átadását követő 40 éves periódust vizsgálunk, hány méterrel lenne érdemes mélyebbre helyezni a nyomvonalat, hogy a lehető legnagyobb legyen a megtérülés?

b) Egy termék árbevétel függvénye $R(x)=12400x^2-4000x^3$, a költségfüggvénye pedig $C(x)=400x^2+2000$, ahol $x$ a termék ára dollárban. Milyen egységár esetén maximális a profit és mekkora ez a profit?

Megnézem, hogyan kell megoldani


5.

a) Egy termék keresleti függvénye

\( f(x)=20000x^2-1000x^3-72000x \)

ahol $x$ a termék árát jelöli euróban. Milyen ár esetén maximális az árbevétel?

b) Egy másik termék keresleti függvénye

\( f(x)=260x^3-11x^4 \)

ahol $x$ a termék árát jelöli euróban.

A termék fajlagos költsége (tehát az egy termékre jutó költség) 12 euró. Milyen ár esetén lesz maximális a profit?

Megnézem, hogyan kell megoldani


6.

Egy 33x18 cm-es kartonlapból téglatest alakú dobozt készítünk. A doboz kiterített hálója és méretei itt láthatóak.

a) Mekkora a doboz térfogata, ha $a=7$ cm?

b) Hogyan kell megválasztani az $a, b, c$ élek hosszát ahhoz, hogy a doboz térfogata maximális legyen?

Megnézem, hogyan kell megoldani


7. Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.

\( f(x)=x^3+3x^2 \)

Megnézem, hogyan kell megoldani


8. Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.

\( f(x)=x^4-18x^2+17 \)

Megnézem, hogyan kell megoldani


9. Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.

\( f(x)=x^3-5x^2+3x-7 \)

Megnézem, hogyan kell megoldani


10. Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.

\( f(x)=2x^6-6x^4+\sqrt{37} \)

Megnézem, hogyan kell megoldani

A témakör tartalma

Itt szuper érthetően elmeséljük, hogyan kell egy teljes függvényvizsgálat feladatot megoldani. A teljes függvényvizsgálat lépései: Értelmezési tartomány, zérushely meghatározása, deriválás, a derivált előjele és monotonitás, második derivált, a második derivált előjele és konvexitás, határértékek, értékkészlet, a függvény ábrázolása. Azt is lépésről-lépésre megmutatjuk, hogyan kell szöveges szélsőértékfeladatokat megoldani. Hogyan írjuk föl a függvényt a megadott adatok alapján, és aztán hogyan vizsgáljuk meg, hogy a függvénynek mikor van szélsőértéke.



A teljes függvényvizsgálat lépései

Még egy teljes függvényvizsgálat lépései

Paraméteres feladat függvényvizsgálattal

Szöveges szélsőértékfeladat

FELADAT | Tejes függvényvizsgálat

FELADAT | Tejes függvényvizsgálat

FELADAT | Tejes függvényvizsgálat

FELADAT | Tejes függvényvizsgálat

Szöveges szélsőérték feladatok megoldása

Gazdasági szélsőérték feladatok megoldása

Kontakt
  • Segítségnyújtás
  • Hibabejelentés
  • Kapcsolatfelvétel
  • Mateking torrent bejelentés
Rólunk
  • A projektről
  • Médiamegjelenések
  • Események
  • Mire jó a matek?
Tartalomjegyzék
  • Középiskolai matek
  • Analízis 1
  • Analízis 2
  • Analízis 3
  • Lineáris algebra
  • Valószínűségszámítás
  • Diszkrét matematika
  • Statisztika
  • További tantárgyak
  • Egyetemi tematikák
  • Matek érettségi
GYIK Felhasználási feltételek Adatvédelmi irányelvek Felhasználás oktatóknak

Cookie-használat módosítása

© Minden jog fenntartva!

Az oldalon található tartalmak részének vagy egészének másolása, elektronikus úton történő tárolása vagy továbbítása, harmadik fél számára nyújtott oktatási célra való hasznosítása kizárólag az üzemeltető írásos engedélyével történhet. Ennek hiányában a felsorolt tevékenységek űzése büntetést von maga után!

barion
macroweb
  • Tantárgyaim