- 15SZERK
- 16SZÖV
- 17 SZAZ
- 18HATV
- 19TER
- 20TT
- 21TERG
- 22szamok
- 23szog
- 24betus
- Halmazok és gráfok
- Egyenletrendszerek, másodfokú egyenletek
- Egyenlőtlenségek
- Abszolútértékes egyenletek
- Exponenciális egyenletek
- Logaritmikus egyenletek
- Gyökös egyenletek
- Trigonometrikus egyenletek
- Számtani és mértani sorozatok
- Szinusztétel és koszinusztétel
- Koordinátageometria
- 12
- 13
- 14
Egyenletrendszerek, másodfokú egyenletek
Elsőfokú egyenletek megoldása
A megoldás lényege, hogy gyűjtsük össze az $x$-eket az egyik oldalon, a másik oldalon pedig a számokat, a végén pedig leosztunk az $x$ együtthatójával.
Ha törtet is látunk az egyenletben, akkor az az első lépés, hogy megszabadulunk attól, mégpedig úgy, hogy beszorzunk a nevezővel.
Ha a tört nevezőjében $x$ is szerepel, akkor azzal kezdjük az egyenlet megoldását, hogy kikötjük, a nevező nem nulla.
Diszkrimináns
A másodfokú egyenlet megoldóképletének gyök alatti részét nevezzük diszkriminánsnak.
\( D = b^2 -4ac \)
Ez dönti el, hogy a másodfokú egyenletnek hány valós megoldása lesz.
Ha a diszkrimináns nulla, akkor csak egy.
Ha a diszkrimináns pozitív, akkor az egyenletnek két valós megoldása van.
Ha pedig negatív, akkor az egyenletnek nincs valós megoldása.
Másodfokú egyenlet megoldóképlete
Ha a másodfokú egyenlet így néz ki:
\( a x^2 + bx + c = 0 \)
Akkor a megoldóképlet:
\( x_{1,2} = \frac{ -b \pm \sqrt{b^2-4ac} }{2a} \)
Oldd meg az alábbi egyenleteket.
a) \( 3x+2=12-2x \)
b) \( \frac{2x+1}{7} + x -2 = \frac{x+5}{4} \)
c) \( \frac{x+2}{x-5}=3 \)
d) \( \frac{x}{x+2} +3 = \frac{4x+1}{x} \)
Oldd meg az alábbi egyenleteket.
a) \( 3x^2-14x+8=0 \)
b) \( -2x^2+5x-3=0 \)
c) \( 4x + \frac{9}{x}=12 \)
d) \( x^2-6x+10=0 \)