- 15SZERK
- 16SZÖV
- 17 SZAZ
- 18HATV
- 19TER
- 20TT
- 21TERG
- 22szamok
- 23szog
- 24betus
- Halmazok és gráfok
- Egyenletrendszerek, másodfokú egyenletek
- Egyenlőtlenségek
- Abszolútértékes egyenletek
- Exponenciális egyenletek
- Logaritmikus egyenletek
- Gyökös egyenletek
- Trigonometrikus egyenletek
- Számtani és mértani sorozatok
- Szinusztétel és koszinusztétel
- Koordinátageometria
- 12
- 13
- 14
Gyökös egyenletek
Gyökös egyenletek megoldása
A gyökös egyenletek megoldását mindig ezzel kell kezdeni:
\( \sqrt{ \text{IZÉ} } \Rightarrow \text{IZÉ} \geq 0 \)
\( \sqrt{ \text{IZÉ} } = \text{VALAMI} \Rightarrow \text{VALAMI} \geq 0 \)
Ezt követően az elsőszámú célunk, hogy megszabaduljunk a gyökjeltől, amit négyzetreemeléssel végezhetünk. Ilyenkor az a lehető legjobb, ha a gyökös izé magányosan álldogál.
Ha megszabadultunk a gyökjeltől, minden úgy megy tovább, ahogy azt már megszokhattuk az egyenleteknél.
A végén viszont fontos, hogy ellenőriznünk kell, a megoldásunk megfelel-e a feladat elején felírt kritériumnak.
Oldjuk meg az alábbi egyenleteket.
a) \( \sqrt{x-4}=3 \)
b) \( \sqrt{x-5}=\sqrt{2-6x} \)
c) \( \sqrt{x-4}=6-x \)
d) \( \sqrt{x-1}=x-7 \)
Oldjuk meg az alábbi egyenleteket.
a) \( \sqrt{x+3}+2=4x \)
b) \( \sqrt{4x+1}-\sqrt{x+3}=2 \)
Oldjuk meg az alábbi egyenletet.
\( \sqrt{x+5}=3 \)
\( \sqrt{x+5}=1-x \)
Oldjuk meg az alábbi egyenletet.
\( \sqrt{x+5}=3 \)
\( \sqrt{x+5}=1-x \)
Oldjuk meg az alábbi egyenletet.
\( \sqrt{x^2+8x+16}+3=\sqrt{x^2-6x+9} \)
Oldjuk meg az alábbi egyenletet.
\( \frac{x+1}{ \sqrt{x-3}}=\sqrt{x-3}+2 \)
Oldjuk meg az alábbi egyenletet.
\( \frac{3x+2}{ \sqrt{x-2}}=\sqrt{x-2}+8 \)
Oldjuk meg az alábbi egyenletet.
\( \sqrt{3x+13}+\sqrt{x+4}=\sqrt{10x+1} \)
Oldjuk meg az alábbi egyenletet.
\( \sqrt{8x+1}-\sqrt{2x+4}=\sqrt{x+3} \)
Oldjuk meg az alábbi egyenletet.
\( \sqrt[4]{x-3}-\sqrt{x-3}-2=0 \)
Oldjuk meg az alábbi egyenletet.
\( \sqrt{x+16}-2=\frac{3}{\sqrt{x+16}} \)