Jump to navigation

Belépés
  • Elfelejtettem a jelszavam
Regisztráció
 
  • Hogyan működik a mateking?
  • Mire jó a matek?
  • Matek érettségi
  • Képletgyűjtemény
  • Feladatgyűjtemény
  • Rólunk
  • Matek 5. osztály próbaüzem
  • Matek 6. osztály próbaüzem
  • Matek 7. osztály próbaüzem
  • Matek 8. osztály próbaüzem
  • Matek 9. osztály
  • Matek 10. osztály
  • Matek 11. osztály
  • Matek 12. osztály
  • Középiskolai matek (teljes)
  • Középszintű matek érettségi
  • Emelt szintű matek érettségi
  • Egyetemi matek alapozó
Összes egyetemi tantárgy
Legnépszerűbb tantárgyak:
  • Analízis 1
  • Analízis 2
  • Analízis 3
  • Valószínűségszámítás
  • Lineáris algebra
  • Diszkrét matematika
  • Statisztika

mateking

Login
 

Bevezető matematika kémia alapszak

Kategóriák
  • Halmazok és gráfok
  • Egyenletrendszerek, másodfokú egyenletek
  • Egyenlőtlenségek
  • Abszolútértékes egyenletek
  • Exponenciális egyenletek
  • Logaritmikus egyenletek
  • Gyökös egyenletek
  • Trigonometrikus egyenletek
  • Számtani és mértani sorozatok
  • Szinusztétel és koszinusztétel
  • Koordinátageometria
  • 12
  • 13
  • 14

Számtani és mértani sorozatok

  • Epizódok
  • Feladatok
01
 
Számtani és mértani sorozatok
02
 
FELADAT
03
 
FELADAT
04
 
FELADAT
05
 
FELADAT
06
 
FELADAT
07
 
FELADAT
08
 
FELADAT
09
 
FELADAT
10
 
FELADAT
11
 
FELADAT
12
 
FELADAT
13
 
FELADAT
14
 
FELADAT
15
 
FELADAT
16
 
FELADAT
17
 
FELADAT
18
 
FELADAT
19
 
FELADAT
20
 
FELADAT
21
 
FELADAT
22
 
FELADAT
1.

Végezzük el az alábbi feladatokat:

a) Egy cég árbevétele az első évben 100 ezer dollár volt és azóta minden évben 20 ezer dollárral nő. Mekkora lesz az árbevétel a hatodik évben?

b) Egy cég árbevétele az első évben 100 ezer dollár volt és azóta minden évben 2%-kal nő. Mekkora lesz az árbevétel a hatodik évben?

c) Egy sorozatról tudjuk, hogy $a_8 = 2$ és $a_7=162$. Mennyi $a_10$, ha számtani sorozatról, illetve ha mértani sorozatról van szó.

Megnézem, hogyan kell megoldani

2.

Egy sorozatról tudjuk, hogy $a_{10} + 2 a_8 = 3 a_9$ és $a_4 = 24$. Mennyi $a_7$, ha 

a) számtani sorozatról van szó.

b) mértani sorozatról van szó.

Megnézem, hogyan kell megoldani

3.

Egy sorozatról tudjuk, hogy $a_8=2$ és $a_7=162$. Mennyi $a_{10}$, ha

a) számtani sorozatról van szó.

b) mértani sorozatról van szó.

Megnézem, hogyan kell megoldani

4.

Egy sorozatról tudjuk, hogy $a_1=-7$ és $a_8=896$.

a) Mennyi az első 10 tag összege, ha számtani, illetve ha mértani sorozatról van szó?

b) Mennyi a második 10 tag összege, ha számtani, illetve ha mértani sorozatról van szó?

Megnézem, hogyan kell megoldani

5.

Egy sorozatról tudjuk, hogy $a_1=5$ és $a_6=1215$. Mennyi lehet $n$ értéke, ha az első $n$ tag összege 5890-nél kisebb?

Megnézem, hogyan kell megoldani

6.

Egy számtani sorozatról tudjuk, hogy az első 5 tag összege 468, az első 6 tag összege pedig 9843. Mennyi az első hét tag összege?

Megnézem, hogyan kell megoldani

7.

Egy mértani sorozatról tudjuk, hogy az első tagja 3, az első 5 tag összege 468, az első 6 tag összege pedig 9843. Mennyi az első hét tag összege?

Megnézem, hogyan kell megoldani

8.

Egy számtani sorozat második tagja 3. E sorozat első tíz tagjának összege harmad akkora, mint a következő tíz tag összege. Határozza meg a sorozat első tagját és differenciáját!

Megnézem, hogyan kell megoldani

9.

Egy számtani sorozat első 10 tagjának az összege feleakkora, mint a következő tíz tag összege. Az első 15 tag összege 375. Határozza meg a sorozat első tagját!

Megnézem, hogyan kell megoldani

10.

Egy számtani sorozat első tagja 12. Az első tíz tag összege négyszer akkora, mint közülük a páros indexű tagok összege. Mekkora a sorozat differenciája?

Megnézem, hogyan kell megoldani

11.

Egy mértani sorozat 12. tagja 36-tal nagyobb a 13.-nál. Ezen két tag szorzata 160. Mekkora a sorozat kvóciense?

Megnézem, hogyan kell megoldani

12.

Egy mértani sorozat első három tagjának az összege 35. Ha a harmadik számot 5-tel csökkentjük, egy számtani sorozat első három tagjához jutunk. Határozza meg a mértani sorozatot!

Megnézem, hogyan kell megoldani

13.

Egy mértani sorozat első 4 tagjának az összege 105, az 5., 6., 7., és 8. tag összege 1680. Melyik ez a sorozat?

Megnézem, hogyan kell megoldani

14.

Egy mértani sorozat első három tagjának a szorzata 216. Ha a harmadik számot 3-mal csökkentjük, egy számtani sorozat első három elemét kapjuk. Határozza meg a mértani sorozatot!

Megnézem, hogyan kell megoldani

15.

Egy számtani sorozat első három tagjának az összege 24. ha az első taghoz 1-et, a másodikhoz 2-öt, a harmadikhoz 35-öt adunk, egy mértani sorozat szomszédos tagjait kapjuk. Határozza meg a számtani sorozatot!

Megnézem, hogyan kell megoldani

16.

Egy mértani sorozat első három tagjának az összege 26. Ha az első taghoz 1-et, a másodikhoz 6-ot, a harmadikhoz 3-at adunk, egy számtani sorozat egymást követő tagjait kapjuk. Határozza meg a mértani sorozatot!

Megnézem, hogyan kell megoldani

17.

Egy számtani sorozat első négy tagjához rendre 5-öt, 6-ot, és 15-öt adva egy mértani sorozat egymást követő tagjait kapjuk. Határozza meg a mértani sorozat kvóciensét!

Megnézem, hogyan kell megoldani

18.

Egy számtani sorozat első három tagjának az összege 36. Ezen tagokhoz rendre 16-ot, 12-öt, és 10-et adva egy mértani sorozat három egymást követő tagját kapjuk. Határozza meg a számtani sorozatot!

Megnézem, hogyan kell megoldani

19.

Három szám egy mértani sorozat három egymást követő tagja. Ha a 2. számhoz 8-at adunk, egy számtani sorozat három szomszédos tagját kapjuk. Ha az így kapott sorozat 3. tagjához 64-et adunk, egy új mértani sorozat három szomszédos tagját kapjuk. Határozza meg az eredeti három számot!

Megnézem, hogyan kell megoldani

20.

Egy számtani sorozat első 3 tagjának az összege 30-cal kisebb, mint a következő 3 tag összege. Az első 6 tag összege 60. Melyik ez a sorozat?

Megnézem, hogyan kell megoldani

21.

Egy számtani sorozat első négy tagjához rendre 54-et, 39-et, 28-at, és 20-at adva egy mértani sorozat egymást követő tagjait kapjuk. Határozza meg a mértani sorozat kvóciensét!

Megnézem, hogyan kell megoldani

22.

Egy számtani sorozat 2. tagja 7, e sorozat első, harmadik és nyolcadik tagja egy mértani sorozat három egymást követő tagja. Határozza meg a mértani sorozat hányadosát!

Megnézem, hogyan kell megoldani

A témakör tartalma


Számtani és mértani sorozatok

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

Kapcsolatfelvétel
  • Segítségnyújtás
  • Hibabejelentés
  • Kapcsolatfelvétel
  • Mateking torrent bejelentés
Rólunk
  • A projektről
  • Médiamegjelenések
  • Legyen élmény a matek
  • Mire jó a matek?
Tartalomjegyzék
  • Középiskolai matek
  • Analízis 1
  • Analízis 2
  • Analízis 3
  • Lineáris algebra
  • Valószínűségszámítás
  • Diszkrét matematika
  • Statisztika
  • További tantárgyak
  • Egyetemi tematikák
  • Matek érettségi
GYIK Általános szerződési feltételek Adatkezelési tájékoztató Felhasználás oktatási célra

Cookie-használat módosítása

© Minden jog fenntartva!

Az oldalon található tartalmak részének vagy egészének másolása, elektronikus úton történő tárolása vagy továbbítása, harmadik fél számára nyújtott oktatási célra való hasznosítása kizárólag az üzemeltető írásos engedélyével történhet. Ennek hiányában a felsorolt tevékenységek űzése büntetést von maga után!

barion
macroweb
  • Tantárgyaim