Trigonometrikus egyenletek
Egységkör
Azt a kört a koordinátarendszerben, aminek középpontja az origo és a sugara 1, egységkörnek nevezzük.
koszinusz
Az egységkörben az $x$ tengely irányát kezdő iránynak nevezzük, az egységvektor végpontjába mutató irányt pedig záró iránynak. A két irány által bezárt szög $\alpha$. Az egységvektor végpontjának $x$ koordinátáját nevezzük az $\alpha$ szög koszinuszának, és így jelöljük: $\cos{ \alpha}$.
Szinusz
Az egységkörben az $x$ tengely irányát kezdő iránynak nevezzük, az egységvektor végpontjába mutató irányt pedig záró iránynak. A két irány által bezárt szög $\alpha$. Az egységvektor végpontjának $y$ koordinátáját nevezzük az $\alpha$ szög szinuszának, és így jelöljük: $\sin{ \alpha}$.
Szinuszos és koszinuszos egyenletek megoldása
A $\sin{x}$ és $\cos{x}$ függvények periodikusak, ez azt jelenti, hogy bizonyos időközönként megismétlik önmagukat. Ezt az időközt periódusnak nevezzük és az ő esetükben a periódus $2\pi$.
Ha van egy ilyen egyenlet, hogy
$ \sin{x} = \frac{1}{2} $
akkor ennek a periodikussága miatt végtelen sok megoldása van, ezért írjuk oda a megoldások mögé, hogy $+2k\pi$.
További nehézség, hogy két megoldás is van, az egyiket a számológépünk adja, a másikat pedig...
Szinusz esetén úgy, hogy a két megoldás összegének $\pi$-nek kell lennie.
Koszinusz esetén pedig úgy, hogy a két megoldás mindig egymás minuszegyszerese.
Tangens
Egy $\alpha$ szög tangense az $\alpha$ szög szinuszának és koszinuszának hányadosával egyenlő:
\( \tan{\alpha} = \frac{ \sin{\alpha}}{\cos{\alpha}} \quad \alpha \neq \frac{\pi}{2}+k\cdot \pi \quad k \in Z \)
Trigonometriai összefüggések
\( \tan{x} = \frac{ \sin{x} }{ \cos{x} } \)
\( \cot{x} = \frac{ \cos{x} }{ \sin{x} } \)
\( \sin^2{\alpha} + \cos^2{\alpha} = 1 \quad \sin^2{\alpha} = 1-\cos^2{\alpha} \quad \cos^2{\alpha}=1-\sin^2{\alpha} \)
\( \cos{\alpha} = \sin{ \left( \frac{ \pi}{2} - \alpha \right) } \quad \cos{\alpha} = \sin{ \left( \alpha + \frac{ \pi}{2}\right) } \quad \sin{\alpha} = \sin{ ( \pi - \alpha) }\)
\( \sin{\alpha} = \cos{ \left( \frac{ \pi}{2} - \alpha \right) } \quad -\sin{\alpha} = \cos{ \left( \alpha + \frac{ \pi}{2}\right) } \quad -\cos{\alpha} = \cos{ ( \pi - \alpha) }\)
\( \sin{2\alpha} = 2 \sin{\alpha}\cos{\alpha} \quad \sin{(\alpha \pm \beta)} = \sin{\alpha} \cos{\beta} \pm \cos{\alpha} \sin{\beta} \)
\( \cos{2\alpha} = \cos^2{\alpha} - \sin^2{\alpha} \quad \cos{(\alpha \pm \beta )} = \cos{\alpha} \cos{\beta} \mp \sin{\alpha}\sin{\beta} \)
\( \sin^2{\alpha}=\frac{1-\cos{2 \alpha}}{2} \)
\( \cos^2{\alpha}=\frac{1+\cos{2 \alpha}}{2} \)
Trigonometrikus függvények
Trigonometrikus függvényeknek vagy szögfüggvényeknek nevezzük azokat a függvényeket, amelyek tartalmaznak trigonometrikus kifejezéseket, mint például szinusz, koszinusz vagy tangens. Ezek eredetileg egy derékszögű háromszög egy szöge és két oldala hányadosa közti összefüggéseket írja le.
Itt egy csodálatos kör, aminek a középpontja az origó és a sugara 1.
Ezt a kört egységkörnek nevezzük.
Az egységkör pontjainak x és y koordinátái -1 és 1 közé eső számok.
Ezekkel a koordinátákkal foglalkozni meglehetősen unalmas időtöltésnek tűnik…
Mivel azonban a matematikában mágikus jelentőségük van, egy kis időt mégis szakítanunk kell rájuk.
Itt van, mondjuk ez a P pont.
Az egységkörben az x tengely irányát kezdő iránynak nevezzük,
a P pontba mutató irányt pedig záró iránynak.
A két irány által bezárt szög lehet pozitív,
és lehet negatív.
A szöget pedig mérhetjük fokban és mérhetjük radiánban.
Nos, ez a radián egész érdekesen működik:
a szögek mérésére az egységkör ívhosszát használja.
Van itt ez a szög, ami fokban számítva
És most lássuk mi a helyzet radiánban.
A kör kerületének a képlete .
Az egységkör sugara 1, tehát a kerülete .
A 45fok a teljes körnek az 1/8-a,
így a hozzá tartozó körív is a teljes kerület 1/8-a vagyis
Nos így kapjuk, hogy
Most pedig lássuk az egységkör pontjainak koordinátáit.
Kezdjük ezzel, amikor
Ezt jegyezzük föl.
A jelek szerint ez egy egyenlő szárú háromszög, tehát x=y.
Jön a Pitagorasz-tétel:
Most nézzük meg mi van akkor, ha
Ha egy háromszögben van két -os szög, akkor a háromszög egyenlő oldalú.
És most jön a Pitagorasz-tétel.
Az esetét elintézhetjük egy tükrözés segítségével.
Ha az -os esetet tükrözzük, akkor pedig eljutunk -hoz.
-nál túl sok számolásra nincs szükség.
Ahogyan –nál és -nál sem.
És most elérkezett az idő, hogy nevet adjunk ezeknek a koordinátáknak.
Az x koordinátát hívjuk Bobnak,
az y koordinátát pedig…
Nos mégsem olyan jó név a Bob. Egy K-val kezdődő név jobban hangzana.
Legyen mondjuk koszinusz.
A másik pedig szinusz.
Rögtön folytatjuk.
Van itt ez az egység sugarú kör.
Az egységkörben az x tengely irányát kezdő iránynak nevezzük,
a P pontba mutató irányt pedig záró iránynak.
A két irány által bezárt szög lehet pozitív,
és lehet negatív.
A szöget pedig mérhetjük fokban és mérhetjük radiánban.
A P pont x koordinátáját -nak nevezzük.
Az y koordinátáját -nak.
Most pedig számoljuk ki néhány szög szinuszát és koszinuszát.
A sinx és cosx periodikus függvények.
Van itt ez az egység sugarú kör.
Az egységkörben az x tengely irányát kezdő iránynak nevezzük,
a P pontba mutató irányt pedig záró iránynak.
A két irány által bezárt szög lehet pozitív,
és lehet negatív.
A szöget pedig mérhetjük fokban és mérhetjük radiánban.
A P pont x koordinátáját -nak nevezzük.
Az y koordinátáját -nak.
Most pedig számoljuk ki néhány szög szinuszát és koszinuszát.
A sinx és cosx periodikus függvények.
Ez azt jelenti, hogy bizonyos időközönként megismétlik önmagukat.
Ezt az időközt periódusnak nevezzük és az ő esetükben ez a periódus 2pi.
Ha van egy ilyen egyenlet, hogy
nos akkor ennek a periodikusság miatt végtelen sok megoldása van.
Ráadásul van egy kék megoldás,
ezt adja a számológép, ez meg a periódus.
Na persze a számológéppel ezt úgy lehet kiszámolni, hogy
és van egy zöld.
Na, ezt már nem adja ki a számológép, hanem egy kis cselhez kell folyamodnunk.
A szinusz úgy működik, hogy mindig van egy kék megoldás, amit a számológép ad,
és van egy zöld megoldás, amit nekünk kell kiszámolni és úgy kapjuk,
hogy az összegüknek éppen pi-nek kell lennie.
Ezt nem árt megjegyezni.
Lássuk, mi a helyzet a koszinusszal.
Itt is lesz egy kék és egy zöld megoldás,
ráadásul mindkettőből végtelen sok.
A helyzet annyival egyszerűbb, mint a szinusz esetében, hogy itt
a kék és a zöld megoldás mindig egymás mínuszegyszerese.
A kéket adja a számológép.
és ha elé biggyesztünk egy mínuszjelet.
nos akkor meg is van a zöld.
A koszinusz tehát sokkal jobb, mint a szinusz.
Itt jön egy újabb remek történet.
A szinusz úgy működik, hogy a kék megoldást mindig a számológép adja,
a zöld megoldás pedig úgy jön ki, hogy a két szög összege mindig pi legyen.
Most pedig újabb állatfajták következnek.
Lássuk hogyan is néznek ezek ki.
Nos nem túl szépen.
Leginkább talán tapétamintának használhatnánk őket.
A vizuális élvezetek után most a trigonometriai képletek özönvízszerű áradata következik.
Csak a legfontosabb egymillió darab képletet nézzük meg.
A LEGFONTOSABB TRIGONOMETRIAI ÖSSZEFÜGGÉSEK
Itt az egység sugarú körben van egy derékszögű háromszög,
amire felírjuk a Pithagorasz-tételt.
Nos talán ez a legfontosabb trigonometriai összefüggésünk.
Van ennek két mutáns változata is.
Most pedig újabb bűvészkedések következnek az egységsugarú körben.
És itt jön még néhány.