- Abszolútértékes egyenletek
- Bevezető a bevezetőhöz
- Vektorok síkban és térben
- Egyenletrendszerek
- Síkidomok és testek
- Logaritmikus egyenletek
- Számtani és mértani sorozatok
- Trigonometrikus egyenletek
- Kombinatorika
- Gyökös egyenletek
- Egyenlőtlenségek
- Exponenciális egyenletek
- Elsőfokú és másodfokú egyenletek
Bevezető a bevezetőhöz
Halmazműveletek
Vannak az $A$ és $B$ halmazok.
Az $A$ és $B$ halmazok uniója: Azon elemek halmaza, amelyek legalább az egyik halmazban benne vannak.
Jele: $A \cup B$
Az $A$ és $B$ halmazok metszete: Azon elemek halmaza, amelyek mindkét halmazban benne vannak.
Jele: $A \cap B$
Az $A$ és $B$ halmazok különbsége: Azon elemek halmaza, amelyek az $A$ halmazba benne vannak, de a $B$ halmazba nem.
Jele: $A \setminus B$
Az $A$ halmaz komplementere a $H$ alaphalmazon nézve: Az alaphalmaz azon elemeinek halmza, amelyek nincsenek benne az $A$-ban.
Jele: $ \overline{A}$
Összefüggő gráf
Egy gráf összefüggő, ha bármelyik csúcsából el lehet jutni bármelyik másik csúcsába élek mentén.
Csúcs fokszáma
A gráf egy csúcsának fokszáma a gráf e csúcsában összefutó élek száma.
Gráfelméleti kör
Egy gráfban körnek nevezünk egy olyan utat, amely csupa különböző csúcsokon és éleken haladva visszavezet a kiinduló csúcsába.
Fa
Ha egy gráfban nincs kör, de maga a gráf összefüggő, akkor fának nevezzük.
Egy $n$ csúcsú fának mindig $n-1$ darab éle van.
Teljes gráf
Azokat a gráfokat, ahol minden csúcs mindegyikkel össze van kötve, teljes gráfnak hívjuk.
Az $n$ csúcsú teljes gráf éleinek a száma:
\( \frac{ n (n-1)}{2} \)
Egyszerű gráf
Egy gráf egyszerű, ha nincs benne sem többszörös él, sem hurokél.
Logikai szita formula
A logikai szita formula két halmazra:
\( \mid A \cup B \mid = \mid A \mid + \mid B \mid - \mid A \cap B \mid \)
A logikai szita formula három halmazra:
\( \mid A \cup B \cup C \mid = \mid A \mid + \mid B \mid + \mid C \mid - \mid A \cap B \mid - \mid A \cap C\mid - \mid B \cap C \mid + \mid A \cap B \cap C \mid \)
Teljes indukció
A teljes indukció olyan állítások bizonyítására alkalmas, melyek $n$ pozitív egész számtól függenek.
A teljes indukciós bizonyítás lépései:
1. lépés: Igazoljuk, hogy az állítás $n=1$ esetén vagy az első néhány $n$-re igaz.
2. lépés: Igazoljuk, hogy ha az állítás $n$-re igaz, akkor $n+1$ esetén is igaz.
Ezzel az állítást minden $n$ pozitív egész számra belátjuk.
Adottak az $A$ és $B$ halmazok:
\( A= \{ 1, 2, 3, 4, 7, 8 \} \quad B= \{ 1,3,4,5,6 \} \)
Határozzuk meg...
a két halmaz metszetét!
a két halmaz unióját!
$ B\setminus A $-t!
Az $A$ halmaz legyen a $[2,6]$ zárt intervallum, a $B$ halmaz pedig az $]1,4[$ nyílt intervallum.
Határozzuk meg ezeket:
\( A \cap B \quad A \cup B \quad A \setminus B \)
Oldjuk meg az alábbi gráfos feladatokat:
a) Egy tárgyalás elején minden résztvevő mindenkivel kezet fog. Így összesen minden résztvevő 4 másikkal fog kezet. Hányan vesznek részt a tárgyaláson és hány kézfogás volt összesen?
b) Egy iskolai versenyen Anna, Bence, Cecil, Dávid, Elemér, Fanni, Gábor, és Hanna játszanak egymással. Mindenki mindenkivel pontosan egyszer játszik.
Anna már játszott Bencével, Gáborral és Hannával.
Bence már játszott Annával, Cecillel és Gáborral.
Cecil csak Bencével, Dávid pedig csak Elemérrel játszott.
Rajzoljuk fel azt a gráfot, ami a jelenlegi állást tartalmazza! Hány játszma van még hátra?
c) Egy ötpontú teljes gráf csúcsai A, B, C, D, E.
Mekkora a B csúcs fokszáma?
Ha a gráfból két élt törlünk, milyen lehetséges értékek adódhatnak B fokszámára?
Mekkora lesz a két él törlése után a csúcsok fokszámainak összege?
Hány élt kell törölni ahhoz, hogy minden csúcs fokszáma 3 legyen?
a) Egy osztályban 12-en utálják a matekot és 18-an a fizikát. Összesen 20-an vannak, akik a kettő közül legalább az egyiket utálják. Hányan utálják mindkettőt?
b) Egy osztályba 20 tanuló jár. Az osztály összes tanulója közül 9-en szeretik a matekot és közülük 5 lány. Tudjuk még, hogy 5 fiú nem szereti a matekot. Hány lány jár az osztályba?
Bizonyítsuk be, hogy $1+3+5+\dots + 2n-1 = n^2$ minden pozitív egész $n$ esetén.
Halmazok, metszet, unió, és egyebek
Van itt egy A halmaz
aminek a komplementere ez. Minden ami körülötte van.
A helyzet akkor válik izgalmasabbá, ha kerítünk az A halmaz mellé
egy B halmazt is.
A halmaz komplementere:
Az a rész, ami mindkettőben benne van az A és B halmazok metszete.
A és B halmazok metszete:
Ez pedig az A és B halmazok uniója.
A és B halmazok uniója:
Ha pedig fogunk egy ollót és szépen kivágjuk az A halmazból azt a részt
ami a B-ben is benne van, nos amit így kapunk az a két halmaz különbsége.
A és B halmazok különbsége:
És most lássuk, mi az a részhalmaz.
A-nak egy részhalmaza például a páros számok halmaza:
Vagy éppen részhalmaza a páratlan számok halmaza is:
És részhalmaza mondjuk a 3-mal osztható számok halmaza is:
Adottak az A és B halmazok:
Határozzuk meg…
a két halmaz metszetét!
a két halmaz unióját!
a B\V-t!
Egy biztosítóhoz az egyik hónapban 24 autós biztosítási kárigény érkezett, és ezek közül
8-an más kárigényt is benyújtottak. Lakásbiztosításra 7 igény érkezett, és egyéb igény 17.
30 olyan ügyfél volt, aki csak egy igényt nyújtott be, 1-1 olyan ügyfél volt, aki a lakáson
kívül még pontosan egy kárigéényt nyújtott be és nem volt olyan, aki mindhármat.
Készítsünk ábrát, és állapítsuk meg, hogy hányan vannak, akik pontosan két kárigényt
nyújtottak be!
Akik pontosan két kárigényt nyújtottak be:
Végül itt jön még egy nagyon érdekes mese bárányokról és számhalmazokról…
Beszélgessünk egy kicsit a számokról.
Ez itt például 3.
Ez pedig 4.
És néha sajnos szükség van negatív számokra is.
Így jutunk el az egész számok halmazáig, amit Z-vel jelölünk.
Aztán fölmerülhet az igény olyan számokra is,
amelyek arányokat fejeznek ki.
Ezeket racionális számoknak nevezzük.
Mondjuk ennek az egyenletnek
a megoldása:
A racionális számokat Q-val jelöljük.
Vannak aztán olyan egyenletek, amiknek
a megoldásai nem racionális számok.
Ilyen például ez az egyenlet:
És így megjelennek az irracionális számok,
amik feltöltik a racionális számok közötti
hézagokat a számegyenesen.
A racionális és az irracionális számok
alkotják együttesen a valós számokat.
Hogyha a számegyenest felszeleteljük részekre…
akkor intervallumokat kapunk.
Ez itt például az 1 és 5 közötti intervallum.
Az 1 és az 5 az intervallum végpontjai.
Olyankor, amikor a végpontok nincsenek benne az intervallumban…
az intervallumot nyílt intervallumnak hívjuk.
NYÍLT INTERVALLUM
Ha mindkét végpont benne van, akkor az a neve, hogy zárt intervallum.
ZÁRT INTERVALLUM
Előfordulhat az is, hogy az intervallum egyik vége nyílt, a másik pedig zárt.
BALRÓL NYÍLT, JOBBRÓL ZÁRT INTERVALLUM:
Az A halmaz
Most pedig nézzük, mi történik, hogyha két intervallumnak vesszük a metszetét…
vagy épp az unióját.
Az intervallumok
Az A halmaz legyen a [2,6] zárt intervallum, a B halmaz pedig az ]1,4[ nyílt intervallum.
Határozzuk meg ezeket:
Úgy tűnik, hogy a 4 nincs benne B-ben…
Így aztán amikor a B halmazt kivonjuk az A halmazból…
akkor a 4-et nem vonjuk ki, az benne marad A-ban.
És ezáltal egy mindkét végén zárt intervallumot kapunk.
Hát, ennyit az intervallumokról.