- Valószínűségszámítás (15,3 pont)
- Térgeometria (12,5 pont)
- Kombinatorika (11,9 pont)
- Függvényvizsgálat, szélsőérték feladatok (11,2 pont)
- Számtani és mértani sorozatok (8,6 pont)
- Statisztika (7,3 pont)
- Az integrálás (7,1 pont)
- Szöveges feladatok (6,1 pont)
- Koordinátageometria (5,1 pont)
- Gráfok (4,8 pont)
- ***Vegyes emelt szintű feladatok***
- Exponenciális egyenletek és egyenlőtlenségek (4,7 pont)
- Exponenciális, logaritmusos és trigonometrikus egyenletrendszerek
- Síkgeometria (4,1 pont)
- Számelmélet (3,9 pont)
- Logaritmus, logaritmikus egyenletek (3,5 pont)
- Középpontos hasonlóság (3,1 pont)
- Trigonometrikus egyenletek és egyenlőtlenségek (3,1 pont)
- Szinusztétel és koszinusztétel (2,7 pont)
- A várható érték (2,6 pont)
- Függvények ábrázolása (2,5 pont)
- Deriválás (1,9 pont)
- Függvények érintője
- Trigonometria
- Sorozatok monotonitása és korlátossága
- Sorozatok határértéke
- Függvények határértéke és folytonossága
- Algebra, nevezetes azonosságok
- Abszolútértékes egyenletek és egyenlőtlenségek
- Bizonyítási módszerek, matematikai logika
- A teljes indukció
- Egybevágósági transzformációk
- Egyenletrendszerek
- Egyenlőtlenségek
- Összetett függvény, inverz függvény
- Valószínűségszámítás
- Elsőfokú függvények
- Feladatok függvényekkel
- Gyökös azonosságok és gyökös egyenletek
- Halmazok
- Másodfokú egyenletek
- Százalékszámítás és pénzügyi számítások
- Vektorok
Számelmélet (3,9 pont)
Szerezd meg a hiányzó tudást
2020 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
2020 MÁJUSI MATEK ÉRETTSÉGI FELADATOK
2019 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
2019 MÁJUSI MATEK ÉRETTSÉGI FELADATOK
2018 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
2018 MÁJUSI MATEK ÉRETTSÉGI FELADATOK
2017 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
2017 MÁJUSI MATEK ÉRETTSÉGI FELADATOK
2016 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
2016 MÁJUSI MATEK ÉRETTSÉGI FELADATOK
2015 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
10-zel oszthatóság
10-zel azok a számok oszthatók, amik 0-ra végződnek.
11-gyel oszthatóság
11-gyel akkor osztható egy szám, ha hátulról kezdve $+-+- \dots$ előjelekkel összeadjuk a számjegyeket, akkor az így kapott szám osztható 11-gyel.
2-vel oszthatóság
Egy szám akkor osztható 2-vel, ha páros, azaz 0, 2, 4, 6, vagy 8-ra végződik.
3-mal oszthatóság
Egy szám akkor osztható 3-mal, ha a számjegyeinek összege osztható 3-mal.
4-gyel oszthatóság
Egy szám akkor osztható 4-gyel, ha az utolsó két jegyéből alkottot szám osztható 4-gyel.
5-tel oszthatóság
Egy szám akkor osztható 5-tel, ha az utolsó számjegye 0 vagy 5.
6-tal oszthatóság
6-tal azok a számok oszthatók, amik 2-vel és 3-mal is oszthatók.
Ezek éppen a 3-mal osztható páros számok.
9-cel oszthatóság
Egy szám akkor osztható 9-cel, ha a számjegyeinek összege osztható 9-cel.
Maradékos osztás
Legyenek $a$ és $b$ természetes számok. Ekkor felírhatók
$a=q \cdot b + r \qquad 0<r<b$
Ahol $q$ és $r$ is természetes számok és $q$ az osztás hányadosa, $r$ pedig a maradék.
Oszthatóság
Az $a$ egész számnak a $b$ egész szám osztója, ha létezik olyan $q$ egész szám, hogy $a=b \cdot q$.
Legnagyobb közös osztó
Az $a$ és $b$ szám legnagyobb közös osztója az a $d$ pozitív szám, amire $ d \mid a$ és $d\mid b$, és e közös osztók közül ez a legnagyobb.
Jelölés: $d=(a,b)$
Néhány oszthatósági szabály
Ha $ a \mid c$ és $ b \mid c$ és $(a,b)=1$ akkor $ab \mid c$
Ha $c \mid ab$ és $(a,c)=1$ akkor $c \mid b$
Számelmélet alaptétele
A nullától és az egységszorzóktól különböző összes $n$ egész szám felbontható prímek szorzatára a sorrendtől és az egységszeresektől eltekintve egyértelműen.
$ n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_k^{\alpha_k} $ ahol $k \in Z^{+}$
Itt $k$ a felbontásban szereplő különböző prímek száma.
Legkisebb közös többszörös (LKKT)
A legkisebb közös többszörös megtalálásának lépései:
- Elkészítjük a prímtényezős felbontást
- Vesszük az összes prímet a két prímtényezős felbontásból
- Mindegyik prím a nagyobbik kitevőt kapja.
a) Osztható-e 3-mal az 5728 és a 4758?
b) Osztható-e 4-gyel az 52742 és a 61524?
c) Osztható-e 6-tal a 3714?
d) Osztható-e 9-cel a 4326 és a 4257?
e) Osztható-e 11-gyel a 3718
a) Bizonyítsuk be, hogy a 3-nál nagyobb ikerprímszámok összege osztható 12-vel!
b) Melyek azok a \( p \) prímszámok, amelyekre \( 2p-1 \) és \( 2p+1 \) is prím?
a) Számoljuk ki a 108 és a 360 legnagyobb közös osztóját.
b) Számoljuk ki a 37 800 és 39 600 számok legnagyobb közös osztóját.
a) Számoljuk ki a 108 és 360 legkisebb közös többszörösét.
b) Számoljuk ki a 37 800 és a 39 600 számok legkisebb közös többszörösét.
a) Igazoljuk, hogy ha egy derékszögű háromszög oldalainak mérőszámai egészek, akkor legalább az egyik befogó mérőszáma páros.
b) Igazoljuk, hogy ha egy derékszögű háromszög oldalainak mérőszámai egészek, akkor az egyik befogó mérőszáma osztható 3-mal.
c) Igazoljuk, hogy ha egy derékszögű háromszög oldalainak mérőszámai egészek, akkor van köztük legalább egy öttel osztható.
d) Igazoljuk, hogy bármely páratlan szám négyzetéből 1-et elvéve 8-cal osztható számot kapunk.
a) Igazoljuk, hogy ha \( n \) páratlan szám, akkor 9 osztója \( 11^n + 7^n \)-nek.
b) Milyen \( n \) természetes szám esetén osztható az alábbi kifejezés 16-tal?
\( 17^n + n\)
c) Igazoljuk, hogy ha \( n \) páratlan, akkor 37 osztója az alábbi kifejezésnek.
\( 1+2^{19} + 3^{19}+4^{19}+\dots + 36^{19} \)