Gazdasági matematika 2
A kurzus 7 szekcióból áll: Valszám alapok, Kombinatorika, Teljes valószínűség tétele, Bayes tétel, Eloszlás, eloszlásfüggvény, sűrűségfüggvény, Várható érték és szórás, Nevezetes diszkrét és folytonos eloszlások, Markov és Csebisev egyenlőtlenségek, Kétváltozós eloszlások
Valszám alapok, Kombinatorika
- -
Eseményeknek nevezzük a valószínűségi kísérlet során bekövetkező lehetséges kimeneteleket.
- -
A valószínűség kiszámításának klasszikus modellje az, hogy megszámoljuk hány elemi eseményből áll a vizsgált esemény és ezt elosztjuk az összes elemi esemény számával.
- -
Ha kör alakban helyezünk el n különböző elemet és azok sorrendjét vizsgáljuk, akkor ciklikus permutációról beszélünk.
Teljes valószínűség tétele, Bayes tétel
- -
- -
A teljes valószínűség tétele azt mondja ki, hogy ha ismerjük egy A esemény feltételes valószínűségét egy teljes eseményrendszer valamennyi eseményére, akkor ebből az A esemény valószínűsége kiszámítható.
- -
- -
A teljes valószínűség tétele azt mondja ki, hogy ha ismerjük egy A esemény feltételes valószínűségét egy teljes eseményrendszer valamennyi eseményére, akkor ebből az A esemény valószínűsége kiszámítható.
Eloszlás, eloszlásfüggvény, sűrűségfüggvény
- -
Diszkrétnek nevezzük azokat a valószínűségi változókat, amik megszámlálhatóan sok értéket vesznek fel.
- -
Az X valószínűségi változó eloszlásfüggvénye F(x). F(x)=P(x<X) Vagyis minden x számhoz hozzárendeli annak a valószínűségét, hogy X<x. Nos ez elég izgi..
- -
Folytonosnak nevezzük azokat a valószínűségi változókat, amik folytonos mennyiségeket mérnek, ilyen például az idő, a távolság.
- -
A sűrűségfüggvény a görbe alatti területekkel írja le egy esemény valószínűségét.
- -
Az eloszlásfüggvény határértéke minusz végtelenben 0, plusz végtelenben 1, monoton nő és balról folytonos.
- -
Három nagyon fontos összefüggés eloszlásfüggvény és sűrűségfüggvény között.
- -
A sűrűségfüggvény integrálja minusz végtelentől plusz végtelenig 1, és nem negatív.
- -
Az $X$ valószínűségi változó $F(x)$ eloszlásfüggvényéből úgy kapjuk meg az $f(x)$ sűrűségfüggvényét, hogy az $F(x)$ eloszlásfüggvényt deriváljuk. Fordítva pedig integrálni kell.
Várható érték és szórás
- -
A szórás azt mutatja meg, hogy a várható érték körül milyen nagy ingadozásra számíthatunk.
- -
A valószínűségi változó értékeinek valószínűségekkel súlyozott átlaga. De valójában ez rém egyszerű, nézzünk rá néhány példát.
- -
Folytonos valószínűségi változó esetén a szórást ugyanúgy kell számolni, mint diszkrét valószínűségi változó esetén:
- -
Folytonos valószínűségi változók esetén a várható értéket egy integrálás segítségével számítjuk.
Nevezetes diszkrét és folytonos eloszlások
- -
A binomiális eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a valószínűsége p és egymástól függetlenül elvégzünk n darab kísérletet, ahol a kísérletek mindegyikében az esemény vagy bekövetkezik vagy nem. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
- -
Az eltelt idők és a távolságok eloszlása.
- -
A hipergeometriai eloszlás egy diszkrét eloszlás, ahol N darab elem közül kiválasztunk n darab elemet visszatevés nélkül. Az összes elem között K darab selejtes található. Az eloszlás annak valószínűségét írja le, hogy a kiválasztott elemek között éppen k darab selejtes van.
- -
A Poisson eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a várható előfordulása lambda darab. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
- -
- -
Mennyiségek eloszlása.
Markov és Csebisev egyenlőtlenségek
- -
A Markov egyenlőtlenség arról szól, hogy az X valószínűségi változó a várható értéknél nem lehet sokkal nagyobb.
- -
A Csebisev egyenlőtlenség azt írja le, hogy az X valószínűségi változó várható értéktől való eltérése nem lehet túl nagy.
- -
Ha egy esemény bekövetkezésének elméleti valószínűsége $p$, akkor minél többször végezzük el a kísérletet, a relatív gyakoriság és az elméleti valószínűség eltérése annál kisebb lesz.
Kétváltozós eloszlások
- -
$X$ és $Y$ együttes eloszlása egy táblázat, amelyben szerepel $X$ és $Y$ összes lehetséges értéke és a hozzájuk tartozó valószínűségek.
- -
A korreláció $X$ és $Y$ valószínűségi változók közötti kapcsolatot írja le.
- -
Két valószínűségi változó együttes eloszlásfüggvényeinek felírása.
- -
Két valószínűségi változó peremeloszlás-függvényeinek felírása.
- -
Két valószínűségi változó együttes sűrűségfüggvény nagyon vicces módon írja le a valószínűségeket a függvény felülete alatti térfogat segítségével, vagyis jó sokat kell integrálgatni.
- -
Két valószínűségi változó együttes sűrűségfüggvényéből ki tudjuk számolni az X és az Y valószínűségi változó saját sűrűségfüggvényét. Ezeket hívjuk perem-sűrűségfüggvényeknek.
- -
Két valószínűségi változó peremeloszlás-függvényeinek felírása.