- Függvények tulajdonságai és ábrázolása
- Összetett függvény és inverzfüggvény
- Sorok
- Sorozatok határértéke
- Sorozatok vizsgálata, monotonitás, küszöbindex
- Függvények határértéke és folytonossága
- Deriválás
- Differenciálhatóság, érintő egyenlete
- Függvényvizsgálat, gazdasági feladatok
- Integrálás
- Határozott integrálás, területszámítás
- Kétváltozós függvények
- Mátrixok és vektorok
- Lineáris függetlenség, bázis
- Elemi bázistranszformáció, egyenletrendszerek
Differenciálhatóság, érintő egyenlete
Differenciahányados
A deriválás lényege, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig úgy, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Az érintő meredekségét pedig úgy kapjuk meg, hogy veszünk rengeteg szelőt, amelyek egyre jobban "rásimulnak" az érintőre, és így a szelők meredekségének a határértéke lesz az érintő meredeksége. A szelők meredekségét írja le a differenciahányados:
\( \frac{ f(x) - f(x_0) }{ x -x_0} \)
Differenciálhányados
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados:
\( m= \lim_{x \to x_0}{ \frac{ f(x)-f(x_0)}{x-x_0}} \)
Ezt nevezzük a függvény $x_0$ pontban vett deriváltjának. Hogyha a derivált ebben a pontban pozitív, az azt jelenti, hogy pozitív meredekségű érintő húzható a függvényhez. Vagyis a függvény ebben a pontban növekszik. Ha pedig a derivált ebben a pontban negatív, akkor negatív meredekségű érintő húzható a függvényhez, és így a függvény csökken. A derivált tehát a függvény növekedési és csökkenési szakaszait képes nekünk megmutatni, és hatalmas szerepe van a függvények viselkedésének vizsgálatánál.
Események
Eseményeknek nevezzük a valószínűségi kísérlet során bekövetkező lehetséges kimeneteleket.
Megkülönböztetünk elemi eseményeket, ilyen például, hogy egy dobókockával 1-est dobunk. Vannak azonban olyan események is amik több elemi eseményből épülnek fel, ilyen például az, hogy párosat dobunk.
Az eseményeket az ABC nagybetűivel jelöljük.
Valószínűség kiszámításának klasszikus modellje
A valószínűség kiszámításának klasszikus modelljét akkor alkalmazhatjuk, ha egy kísérletnek véges sok kimenetele van és ezek valószínűsége egyenlő. Ekkor az esemény valószínűségét úgy kaphatjuk meg, hogy megszámoljuk hány elemi eseményből áll és ezt elosztjuk az összes elemi esemény számával.
Független események
Az $A$ és $B$ eseményt egymástól függetlennek nevezzük, ha teljesül rájuk, hogy
\( P(A \cap B) = P(A) \cdot P(B) \)
Kizáró események
Az $A$ és $B$ eseményt kizárónak nevezünk, ha
\( A \cap B = \emptyset \)
Feltételes valószínűség
Az $A$ esemény valószínűsége, ha tudjuk, hogy a $B$ esemény biztosan bekövetkezik:
\( P(A \mid B) = \frac{ P(A \cap B) }{ P(B) } \)
Műveletek eseményekkel
\( P(A \cup B) = P(A) + P(B) - P(A \cap B) \)
\( P(A \cap B) = P(A) + P(B) - P(A \cup B) \)
\( P(A \setminus B) = P(A) - P(A \cap B) \)
\( P( \overline{A} ) = 1 - P(A) \)
Az érintő egyenlete
A derivált geometriai jelentése a függvény grafikonjához húzott érintő meredeksége.
Az érintő egyenlete:
\( f(x) = f'(x_0) (x-x_0) + f(x_0) \)
Oldjuk meg az alábbi feladatokat:
a) Mi lesz az \( f(x)=x^2+5x-7 \) függvények a deriváltja az \( x_0=2 \)-ben?
b) Mi lesz az \( f(x)=x^3+2x^2-3x-1 \) függvények a deriváltja az \( x_0=1 \)-ben?
c) Mi lesz az \( f(x)=-4x^2+5x \) függvények a deriváltja az \( x_0=-3 \)-ban?
Legyen az $A$ esemény, hogy páros számot dobunk, a $B$ esemény pedig, hogy 2-nél nagyobb számot dobunk dobókockával.
Adjuk meg az alábbi események valószínűségeit.
\( A, \; B, \; A\cup B, \; A\cap B, \; A\setminus B, \; \overline{A} \)
a) Legyen az A esemény, hogy egy dobókockával párosat dobunk, a B esemény pedig az, hogy 2-nél nagyobbat. Függetlenek-e ezek az események? Kizáróak-e?
b) Egy biztosítónál az ügyfelek 70%-ának van autóbiztosítása, 60%-ának lakásbiztosítása és 90%-uknak a kettő közül legalább az egyik. Legyen az A esemény, hogy egy ügyfélnek van autóbiztosítása, a B esemény pedig, hogy van lakásbiztosítása. Független-e a két esemény?
c) Egy másik biztosítónál az ügyfelek 70%-ának van autóbiztosítása és az ügyfelek 20%-a rendelkezik lakásbiztosítással úgy, hogy autóbiztosítása nincsen. Hány százalékuknak van lakásbiztosítása, ha az autó és lakásbiztosítás egymástól független?
Oldjuk meg az alábbi feladatokat:
a) Deriválható-e az alábbi függvény az \( x_0 = 2 \) pontban?
\( f(x)= \begin{cases} 9-x^2, &\text{ha } x<2 \\ 3x-1, &\text{ha } x \geq 2 \end{cases} \)
b) Deriválható-e az alábbi függvény az \( x_0 = -3 \) pontban?
\( f(x)= \begin{cases} x^4-4x^2, &\text{ha } x<-3 \\ \sqrt{x^2+16}, &\text{ha } x \geq -3 \end{cases} \)
c) Deriválható-e az alábbi függvény az \( x_0 = 2 \) pontban?
\( f(x)= \begin{cases} 4x^2-7e^{x-2}-9, &\text{ha } x<2 \\ \ln{ \left( x^3-3x-1 \right)}, &\text{ha } x \geq 2 \end{cases} \)
a) Egy városban 1000 emberből átlag 350-en dohányoznak, 120-an rendelkeznek valamilyen keringési problémával és 400-an vannak, akik a kettő közül legalább az egyik csoportba tartoznak. Ha egy lakosnak keringési problémái vannak, mekkora a valószínűsége, hogy dohányzik?
b) A reggeli és esti hírműsorok közül legalább az egyiket egy felmérés szerint a TV nézők 90%-a megnézi. Aki az esti hírműsort nézi 20% eséllyel már reggel is nézett hírműsort. A reggeli hírműsorokat az összes TV néző 30%-a nézi. Mi a valószínűsége, hogy ha valaki reggel néz hírműsort akkor este is?
Oldjuk meg az alábbi feladatokat:
a) Milyen \( A \) paraméter esetén deriválható az alábbi függvény az \( x_0 = 1 \) pontban?
\( f(x)= \begin{cases} \sqrt[4]{\ln{x}+6x+10}, &\text{ha } x>1 \\ \frac{A}{x^2+4}, &\text{ha } x \geq 1 \end{cases} \)
b) Megadható-e az \( A \) és \( B \) paraméter úgy, hogy ez a függvény deriválható legyen az \( x_0 = -2 \) pontban?
\( f(x)= \begin{cases} Ax^4+4x, &\text{ha } x \leq -2 \\ x^3+Bx^2, &\text{ha } x > -2 \end{cases} \)
Oldjuk meg az alábbi feladatokat:
a) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=2x^3+1 \) függvényt az \( y_0=55 \) pontban érinti.
b) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=x^2-x+4 \) függvényt egy olyan pontban érinti, aminek \( x \) koordinátája negatív, \( y \) koordinátája 24.
c) Keressük annak az érintőnek az egyenletét, amely érinti az \( f(x)=x^4+5x+12 \) függvényt és párhuzamos az \( y=-27x+1 \) egyenessel.
d) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=2e^{x-4}+5 \) függvényt az \( y_0=7 \) pontban érinti.
a) Egy 52 lapos francia kártyából kihúzunk 5 lapot. Mi a valószínűsége, hogy az első és a harmadik lap ász lesz?
b) Egy 52 lapos francia kártyából kihúzunk 5 lapot. Mi a valószínűsége, hogy csak az első és a harmadik lap ász?
c) Egy 52 lapos francia kártyából kihúzunk 5 lapot. Mi a valószínűsége, hogy a lapok közt két ász lesz?
d) Egy kosárlabdacsapat 9 játékosból áll, közülük öten vannak egyszerre a pályán. Mekkora a valószínűsége, hogy a két legjobb játékos egyszerre van a pályán?
e) Egy kosárlabdacsapat 9 játékosból áll, közülük öten vannak egyszerre a pályán. Mia valószínűsége, hogy a két legjobb játékos közül csak az egyik van a pályán?
Öt lány, Hanna, Luca, Léna, Mira és Lili együtt megy moziba, és öt egymás melletti helyre vesznek jegyet.
a) Hányféleképpen ülhetnek le egymás mellé?
b) Hányféleképpen ülhetnek egymás mellé, ha Mira mindenképpen középen szeretne ülni?
c) Hányféleképpen ülhetnek egymás mellé, ha Mira mindenképpen a szélén szeretne ülni?
d) Hányféleképpen ülhetnek le a lányok, ha Mira és Lili mindenképpen egymás mellé szeretne ülni?
e) Hányféleképpen ülhetnek le a lányok, ha Hanna és Luca biztosan nem akar egymás mellé ülni?
Hányféleképpen rakhatunk egymás mellé egy polcra hat könyvet, ha a piros és a kék könyvet nem szeretnénk egymás mellé rakni. Ezek a könyvek: Rózsaszín, sárga, piros, lila, kék, zöld
Oldjuk meg az alábbi feladatokat:
a) Van itt ez a függvény: \( f(x)=\sqrt[3]{\ln{x}+x^2} \), és keressük az érintő egyenletét az \( x_0=1 \) pontban.
b) Van itt ez a függvény: \( f(x)=\sin{(\ln{x})}+x \), és keressük az érintő egyenletét az \( x_0=1 \) pontban.
c) Van itt ez a függvény: \( f(x)=\ln{(\cos{x})}+e^{4x} \), és keressük az érintő egyenletét az \( x_0=0 \) pontban.
d) Van itt ez a függvény: \( f(x)=\arctan{x}+e^x \), és keressük az érintő egyenletét az \( x_0=0 \) pontban.
e) Van itt ez a függvény: \( f(x)=\arctan{( \ln{x} )} \), és keressük az érintő egyenletét az \( x_0=1 \) pontban.
Hat darab számkártyánk van: 1, 2, 3, 4, 5, 6. Hányféle hatjegyű számot tudunk kirakni ezekkel a kártyákkal?
Hat darab számkártyánk van: 7, 7, 8, 8, 8, 8. Hányféle hatjegyű számot tudunk kirakni ezekkel a kártyákkal?
12 darab virágot szeretnénk sorban egymás mellé ültetni. Van köztük 5 piros, 4 sárga és 3 lila. Hányféle lehetőség van?
Ezeknek a számkártyáknak a segítségével nyolcjegyű számokat készítünk: 4, 4, 5, 5, 5, 6, 6, 7
a) Összesen hány nyolcjegyű szám készíthető?
b) Hányféle páros nyolcjegyű szám készíthető?
Itt vannak ezek a számjegyek: 1, 2, 3, 4, 5, 6, 7, 8.
a) Hányféle ötjegyű szám készíthető ezekkel a számjegyekkel, ha minden számjegyet csak egyszer használhatunk föl?
b) Hányféle ötjegyű szám készíthető ezekkel a számjegyekkel, ha minden számjegyet többször is használhatunk?
Oldjuk meg az alábbi feladatokat:
a) Deriválható-e ez a függvény az \( x_0 = 3 \) és \( x_1 = 6 \) pontokban?
\( f(x)=\left| x^2-6x \right| \)
b) Deriválható-e ez a függvény az \( x_0 = 0 \) és \( x_1 = 6 \) pontokban?
\( f(x)=x \cdot \left| x^2-6x \right| \)
Oldjuk meg az alábbi feladatokat:
a) Deriválható-e ez a függvény az \( x_0 = 0 \) pontban?
\( f(x)=\left| x \right| \cdot \sin{x} \)
b) Milyen \( A \) paraméter esetén deriválható ez a függvény az \( x_0=0 \) pontban?
\( f(x)= \begin{cases} e^{Ax^2-x}, &\text{ha } x<0 \\ \cos{(x^2+x)}, &\text{ha } x \geq 0 \end{cases} \)
Mely pontban, vagy pontokban párhuzamos egymással az $f(x)=(x-3)^2+7$ és a $g(x)=3\ln{x}$ függvények érintője?
Adjuk meg az $f(x)=(x+2)e^x$ függvény esetén az alábbiakat:
a) paritását
b) érintő egyenes egyenletét $x_0=-3$ helyen.
Van itt ez a függvény: $f(x)=2x \cdot \ln{x} $
És keressük az érintő egyenletét az $x_0 = \sqrt{e}$ pontban.
Van itt ez a függvény: $f(x)=(x-2)e^{2x-4}$
És adjuk meg az érintő egyenletét a függvény zérushelyén.