14 témakör, 262 rövid és szuper érthető epizód

Ez az ütős Kalkulus földtudomány és fizika alapszak kurzus segít mindent azonnal megérteni és sikeresen vizsgázni. 262 rövid és szuper-érthető epizód és 2 teszt segítségével 14 témakörön keresztül vezet végig az őrülten jó Kalkulus földtudomány és fizika alapszak rögös útjain. Mindezt olyan laza stílusban, mintha csak a rántotta elkészítésének problémájáról lenne szó.

Tartalomjegyzék: 

A kurzus 14 szekcióból áll: Rémes előzmények, Függvények és inverz függvények, Komplex számok, Sorozatok, Függvények határértéke és folytonossága, A határérték precíz definíciója, Deriválás, Differenciálhatóság vizsgálata és az érintő egyenlete, Függvényvizsgálat, L'Hospital-szabály, Taylor-sor, Taylor-polinom, Határozatlan integrálás, Határozott integrálás, Kétváltozós függvények, Differenciálegyenletek

Rémes előzmények

  • -

    Mi az egység sugarú kör? Mi az a szinusz és koszinusz? Mire jó a szinusz és a koszinusz? Mi az a radián? Mi a kapcsolat a fok és a radián között?

  • -

    Az egységkör egy szöggel elforgatott egységvektorának végpontjának x koordinátáját nevezzük a szög koszinuszának

  • -

    Az egységkör egy szöggel elforgatott egységvektorának végpontjának y koordinátáját nevezzük a szög szinuszának.

  • -

    Szinuszt és koszinuszt tartalmazó egyenletek megoldásának lépései.

  • -

    Egy szög tangense a szög szinuszának és koszinuszának hányadosával egyenlő.

  • -

    Trigonometriai képlet összefoglaló. Összefüggések a tangens és kotangens között. A trigonometria alapegyenlete. Szögek kétszeresének szinusza és koszinusza.

  • -

    A görbe ívhossza egy differencálható görbe szakaszának a hossza.

  • -

    A paraméteres görbe egyenlete a görbén mozgó pont pillanatnyi koordinátáit írja le. A paraméteres görbe deriválásával kapjuk a $v(t)$ sebességvektort, ami minden időpillanatban megadja a görbén mozgó $P$ pont sebességének irányát és nagyságát.

  • -

    A függvény hozzárendelésének megfordításával kapjuk a függvény inverzfüggvényét, amennyiben a megfordított hozzárendelés is egy egyértelmű hozzárendelés.

Függvények és inverz függvények

  • -

    Megnézzük, hogy melyik függvény hogyan néz ki, aztán megnézzük a külső és belső függvénytranszformációkat. Eltolás az x tengely mentén, eltolás az y tengely mentén, tükrözés, nyújtás.

  • -

    A függvény konvexitása megmondja, hogy a függvény szomorú vagy vidám hangulatban van.

  • -

    A függvény monotonitása lehet növekedő, csökkenő, szigorúan monton növekedő vagy szigorúan monoton csökkenő.

  • -

    Globális és lokális maximumok és minimumok.

  • -

    Mikor páros, mikor páratlan vagy éppen egyik sem egy függvény.

  • -

    Lássuk mik azok a polinomfüggvények, és hogyan kell őket ábrázolni.

  • -

    A függvény hozzárendelésének megfordításával kapjuk a függvény inverzfüggvényét, amennyiben a megfordított hozzárendelés is egy egyértelmű hozzárendelés.

Komplex számok

Sorozatok

Függvények határértéke és folytonossága

  • -

    Egy függvényt akkor nevezünk folytonosnak valamely pontban, ha itt a függvényérték és a határérték megegyezik. Lássuk miért is ennyire fontos ez.

  • -

    Függvények szakadása négy féle lehet: megszüntethető szakadás, ugrás, nem megszüntethető, nem véges szakadás, nem megszüntethető oszcilláló szakadás.

A határérték precíz definíciója

Deriválás

Differenciálhatóság vizsgálata és az érintő egyenlete

Függvényvizsgálat

L'Hospital-szabály, Taylor-sor, Taylor-polinom

  • -

    határérték számítás csodafegyvere, egy szuper módszer, amivel nagyon sok bonyolult határérték gyorsan kiszámolható.

  • -

    Néhány exponenciális, logaritmusos és végtelenhez, nullához tartó nevezetes sorozatok határértékei.

  • -

    Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...

  • -

    Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...

  • -

    Az $e^x$, lnx, sinx és cosx függvények Taylor sorai.

  • -

    Amikor egy függvény x helyen lévő értékét szeretnénk közelíteni egy Taylor polinommal, akkor lesz egy kis hibánk, mivel a polinom nem teljesen követi a függvényt. Ennek a hibának a kifejezésére van a Lagrange-féle maradéktag. 

Határozatlan integrálás

Határozott integrálás

  • -

    A Newton-Leibniz formula egy egyszerűen használható képlet a határozott integrál kiszámításához. Ez a tétel az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.

  • -

    Végtelenbe nyúló tartományok területének kiszámolása egy fontos függvénnyel.

  • -

    A ciklois egy olyan görbe, amelyet egy irányított görbén csúszás nélkül legördülő kör egy meghatározott pontja ír le.

Kétváltozós függvények

  • -

    A kétváltozós függvények úgy működnek, hogy két valós számhoz rendelnek hozzá egy harmadik valós számot.

  • -

    A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.

  • -

    A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.

  • -

     másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen nyeregpontja van-e.

  • -

    Egy általános módszer, amivel kétváltozós függvények szélsőértékeit és nyeregpontjait lehet meghatározni

  • -

    Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.

  • -

    Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.

  • -

    Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ez esetben most egy sík lesz az érintő.

  • -

    A parciális deriváltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.

  • -

    Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.

  • -

    Egy függvény akkor implicit, ha $y$ nincs kifejezve, vagyis nem $y=\dots$ alakú.

  • -

    Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.

Differenciálegyenletek