- Rémes előzmények
- Függvények és inverz függvények
- Komplex számok
- Sorozatok
- Függvények határértéke és folytonossága
- A határérték precíz definíciója
- Deriválás
- Differenciálhatóság vizsgálata és az érintő egyenlete
- Függvényvizsgálat
- L'Hospital-szabály, Taylor-sor, Taylor-polinom
- Határozatlan integrálás
- Határozott integrálás
- Kétváltozós függvények
- Differenciálegyenletek
Differenciálhatóság vizsgálata és az érintő egyenlete
Differenciahányados
A deriválás lényege, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig úgy, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Az érintő meredekségét pedig úgy kapjuk meg, hogy veszünk rengeteg szelőt, amelyek egyre jobban "rásimulnak" az érintőre, és így a szelők meredekségének a határértéke lesz az érintő meredeksége. A szelők meredekségét írja le a differenciahányados:
\( \frac{ f(x) - f(x_0) }{ x -x_0} \)
Differenciálhányados
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados:
\( m= \lim_{x \to x_0}{ \frac{ f(x)-f(x_0)}{x-x_0}} \)
Ezt nevezzük a függvény $x_0$ pontban vett deriváltjának. Hogyha a derivált ebben a pontban pozitív, az azt jelenti, hogy pozitív meredekségű érintő húzható a függvényhez. Vagyis a függvény ebben a pontban növekszik. Ha pedig a derivált ebben a pontban negatív, akkor negatív meredekségű érintő húzható a függvényhez, és így a függvény csökken. A derivált tehát a függvény növekedési és csökkenési szakaszait képes nekünk megmutatni, és hatalmas szerepe van a függvények viselkedésének vizsgálatánál.
Az érintő egyenlete
A derivált geometriai jelentése a függvény grafikonjához húzott érintő meredeksége.
Az érintő egyenlete:
\( f(x) = f'(x_0) (x-x_0) + f(x_0) \)
Oldjuk meg az alábbi feladatokat:
a) Mi lesz az \( f(x)=x^2+5x-7 \) függvények a deriváltja az \( x_0=2 \)-ben?
b) Mi lesz az \( f(x)=x^3+2x^2-3x-1 \) függvények a deriváltja az \( x_0=1 \)-ben?
c) Mi lesz az \( f(x)=-4x^2+5x \) függvények a deriváltja az \( x_0=-3 \)-ban?
Oldjuk meg az alábbi feladatokat:
a) Deriválható-e az alábbi függvény az \( x_0 = 2 \) pontban?
\( f(x)= \begin{cases} 9-x^2, &\text{ha } x<2 \\ 3x-1, &\text{ha } x \geq 2 \end{cases} \)
b) Deriválható-e az alábbi függvény az \( x_0 = -3 \) pontban?
\( f(x)= \begin{cases} x^4-4x^2, &\text{ha } x<-3 \\ \sqrt{x^2+16}, &\text{ha } x \geq -3 \end{cases} \)
c) Deriválható-e az alábbi függvény az \( x_0 = 2 \) pontban?
\( f(x)= \begin{cases} 4x^2-7e^{x-2}-9, &\text{ha } x<2 \\ \ln{ \left( x^3-3x-1 \right)}, &\text{ha } x \geq 2 \end{cases} \)
Oldjuk meg az alábbi feladatokat:
a) Milyen \( A \) paraméter esetén deriválható az alábbi függvény az \( x_0 = 1 \) pontban?
\( f(x)= \begin{cases} \sqrt[4]{\ln{x}+6x+10}, &\text{ha } x>1 \\ \frac{A}{x^2+4}, &\text{ha } x \geq 1 \end{cases} \)
b) Megadható-e az \( A \) és \( B \) paraméter úgy, hogy ez a függvény deriválható legyen az \( x_0 = -2 \) pontban?
\( f(x)= \begin{cases} Ax^4+4x, &\text{ha } x \leq -2 \\ x^3+Bx^2, &\text{ha } x > -2 \end{cases} \)
Oldjuk meg az alábbi feladatokat:
a) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=2x^3+1 \) függvényt az \( y_0=55 \) pontban érinti.
b) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=x^2-x+4 \) függvényt egy olyan pontban érinti, aminek \( x \) koordinátája negatív, \( y \) koordinátája 24.
c) Keressük annak az érintőnek az egyenletét, amely érinti az \( f(x)=x^4+5x+12 \) függvényt és párhuzamos az \( y=-27x+1 \) egyenessel.
d) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=2e^{x-4}+5 \) függvényt az \( y_0=7 \) pontban érinti.