- Algebra, betűs kifejezések használata
- Nevezetes azonosságok, binomiális tétel
- Hatványozás, hatványazonosságok, normálalak
- Gyökvonás, gyökös azonosságok, gyöktelenítés
- Halmazok
- Gráfok
- Bizonyítási módszerek, matematikai logika
- Számelmélet, számrendszerek
- Egyenes arányosság, fordított arányosság
- Arányos osztás, szöveges feladatok arányos osztással
- Elsőfokú egyenletek
- Függvények
- Elsőfokú függvények
- Függvények ábrázolása
- Másodfokú egyenletek
- Egyenlőtlenségek
- Pontok, egyenesek, síkok, szögek, a geometria alapjai
- Síkidomok, háromszögek, négyszögek, sokszögek
- A kör
- A Pitagorasz-tétel
- Egybevágósági transzformációk
- Mértékegységek és mértékegység-átváltás
- Abszolútértékes egyenletek és egyenlőtlenségek
- Egyenletrendszerek
- Gyökös azonosságok és gyökös egyenletek
- Szöveges feladatok
- Középpontos hasonlóság
- Trigonometria a síkgeometriában
- Kombinatorika
- Exponenciális egyenletek és egyenlőtlenségek
- Logaritmus, logaritmusos egyenletek, egyenlőtlenségek
- Százalékszámítás
- Kamatos kamat és pénzügyi számítások
- Számtani és mértani sorozatok
- Trigonometrikus egyenletek és egyenlőtlenségek
- Exponenciális, logaritmusos és trigonometrikus egyenletrendszerek (emelt)
- Szinusztétel és koszinusztétel
- Feladatok függvényekkel
- Vektorok
- Koordinátageometria
- Térgeometria
- Statisztika
- Valószínűségszámítás
- Geometriai valószínűség
- A várható érték
- A parabola (emelt szint)
- A teljes indukció (emelt szint)
- Vegyes emelt szintű feladatok
- Sorozatok határértéke (emelt szint)
- Sorozatok monotonitása és korlátossága (emelt szint)
- Függvények határértéke és folytonossága (emelt szint)
- Deriválás (emelt szint)
- Függvényvizsgálat, szélsőérték feladatok (emelt szint)
- Függvények érintője (emelt szint)
- Az integrálás (emelt szint)
Deriválás (emelt szint)
Differenciahányados
A deriválás lényege, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig úgy, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Az érintő meredekségét pedig úgy kapjuk meg, hogy veszünk rengeteg szelőt, amelyek egyre jobban "rásimulnak" az érintőre, és így a szelők meredekségének a határértéke lesz az érintő meredeksége. A szelők meredekségét írja le a differenciahányados:
\( \frac{ f(x) - f(x_0) }{ x -x_0} \)
Differenciálhányados
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados:
\( m= \lim_{x \to x_0}{ \frac{ f(x)-f(x_0)}{x-x_0}} \)
Ezt nevezzük a függvény $x_0$ pontban vett deriváltjának. Hogyha a derivált ebben a pontban pozitív, az azt jelenti, hogy pozitív meredekségű érintő húzható a függvényhez. Vagyis a függvény ebben a pontban növekszik. Ha pedig a derivált ebben a pontban negatív, akkor negatív meredekségű érintő húzható a függvényhez, és így a függvény csökken. A derivált tehát a függvény növekedési és csökkenési szakaszait képes nekünk megmutatni, és hatalmas szerepe van a függvények viselkedésének vizsgálatánál.
Nevezetes függvények deriváltjai
\( (c)'=0 \quad \left( x^n \right)' = n x^{n-1} \quad \left( e^x \right)' = e^x \quad \left( a^x \right)' = a^x \ln{a} \)
\( ( \ln{x} )' = \frac{1}{x} \quad ( \log_a{x} )' = \frac{1}{x} \frac{1}{\ln{a}} \quad ( \sin{x} )' = \cos{x} \quad ( \cos{x} )' = - \sin{x} \)
\( ( \tan{x} )' = \frac{1}{\cos^2{x} } \quad ( \arcsin{x} )' = \frac{1}{\sqrt{1-x^2}} \quad ( \arccos{x} )' = \frac{-1}{\sqrt{1-x^2}} \quad (\arctan{x})' = \frac{1}{1+x^2} \)
Deriválási szabályok
$f$ és $g$ deriválható függvények, és $c$ valós szám esetén a deriválási szabályok:
\( (cf)' = cf' \quad \left( \frac{f}{c} \right)' = \frac{f'}{c} \)
\( (f+g)' = f' + g' \)
\( (fg)' = f'g + fg' \)
\( \left( \frac{f}{g} \right)' = \frac{ f'g - fg'}{g^2} \)
\( \left( \frac{c}{f} \right)' = \frac{-cf'}{f^2} \)
\( \left( f \left( g(x) \right) \right)' = f' \left( g(x) \right) g'(x) \)
A deriválási szabályok megmutatják, hogyan kell egy függvény konstans-szorosát deriválni, hogyan kell két függvény összegét vagy épp különbségét deriválni, mi lesz két függvény szorzatának a deriváltja, mi lesz két függvény hányadosának a deriváltja. Van két extra deriválási szabály is, amit érdemes tudni, az egyik amikor egy függvényt osztunk egy számmal, a másik pedig amikor egy számot osztunk el egy függvénnyel. Mindkét esetben törtet deriválunk, de nem kell a trötek deriválására használt eléggé komplikált képletet használni, hanem ezekre az esetekre vannak egyszerűbb képletek. Végül pedig jön az összetett függvények deriválási szabályavagyis a lánc-szabály.
A lánc-szabály
A lánc-szabály az összetett függvények deriválási szabálya. Ha $f$ és $g$ deriválható függvények, akkor az $f$ és $g$ függvények összetételéből kapott függvény deriváltja:
\( \left( f \left( g(x) \right) \right)' = f' \left( g(x) \right) g'(x) \)
Ezt a képletet nevezzük lánc-szabálynak, és érdemes alaposan begyakorlni, ugyanis ez szokta a legtöbb gondot okozni a deriválással kapcsolatos feladatok megoldása közben.
Deriváljuk az alábbi függvényeket.
a) \( \left( 5\cdot x^3 \right)' = \; ? \)
b) \( \left( \frac{x^5}{7} \right)' = \; ? \)
c) \( \left( x^2+\ln{x} \right)' = \; ? \)
d) \( \left( x^3 \cdot \ln{x} \right)' = \; ? \)
e) \( \left( \frac{x^2}{\ln{x}} \right)' = \; ? \)
f) \( \left( \frac{5}{x^3+2} \right)' = \; ? \)
Deriváljuk az alábbi függvényeket.
a) \( \left( \sin{ \left( x^6+x^2 \right)} \right)' = \; ? \)
b) \( \left( \left( 3^x +\ln{x} \right)^4 \right)' = \; ? \)
c) \( \left( 5^{x^3+x} \right)' = \; ? \)
d) \( \left( \ln{\left( x^4+x^2 \right)} \right)' = \; ? \)
Deriváljuk az alábbi függvényeket.
a) \( f(x)=x^x \)
b) \( f(x)=(\cos{x})^{ \sin{x}} \)
Deriváljuk az alábbi függvényeket.
a) \( f(x)=x^{100}+x^7+7^x+\sqrt{42} \)
b) \( f(x)= \frac{ x^6-4x^4+7^x}{42} \)
c) \( f(x)= \sqrt[5]{x}+x^2 \cdot \sqrt[3]{x} \)
d) \( f(x)= \sqrt[3]{ x\cdot \sqrt[5]{x^3} } \)
Deriváljuk az alábbi függvényt.
\( f(x)=\sqrt[7]{x^3 \cdot \sqrt[4]{x}}\cdot \lg{x} \)
Deriváljuk az alábbi függvényt.
\( f(x)=\sqrt[4]{x^3 + \sqrt[7]{x}} \)
Deriváljuk az alábbi függvényt.
\( f(x)= \sqrt[4]{e^x} + \sqrt[3]{e^x} \)
Deriváljuk az alábbi függvényt.
\( f(x)= \ln{ \left( x^6-x^2+6 \right) } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ \ln{x} -3^x}{ \sqrt[5]{x^4} + x^2 } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ 3x }{ (4-x)^2 } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ 3x }{ \sqrt{ e^x +1 } } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ \lg{3x} + e^2 }{ \sqrt[3]{ 4-x } } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ e^{4x} - \sqrt[7]{x^4} }{ \ln{ (4-2x)} +7 } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \left( x^5-4^x \right) \left( \ln{x} - \sqrt[6]{x^7} \right) \)
Deriváljuk az alábbi függvényt.
\( f(x)= \ln{ \frac{ x^5 - 2^x }{ \sqrt[4]{x-6} +e^2} } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \ln{ \sqrt[3]{ \frac{ x^4 - e^x}{5^{2x-4} -\ln{ \pi} }} } \)
Mi az a deriválás? Már mutatjuk is, hogyan kell deriválni szuper-érthető példákon keresztül. Differencia hányados, Differenciál hányados, Az érintő meredeksége, Alapderiváltak, Deriválási szabályok, Deriválás feladatok, Deriválás táblázat, Nevezetes függvények deriváltjai, Összeg deriváltja, Szorzat deriváltja, Hányados deriváltja, Összetett függvény deriváltja, A láncszabály, Deriválás feladatok megoldásokkal, Derivált táblázat, Derivált függvény, Deriválási feladatok, Deriválási képletek, Differenciálszámítás, Differenciálszámítás feladatok.
Van itt egy függvény.
Ha néhány pontjában érintőt húzunk a függvényhez,
akkor az látszik, hogy ahol az érintő fölfelé megy, ott a függvény növekszik,
ahol az érintő lefelé megy, ott a függvény csökken.
Ott pedig, ahol az érintő vízszintesen megy, a függvénynek minimuma van,
de tulajdonképpen lehet maximuma is.
Mi az a deriválás, Deriváltak kiszámolása, Differencia hányados, Differenciál hányados, Alapderiváltak, Deriválási szabályok, Összeg deriváltja, Szorzat deriváltja, Hányados deriváltja, Összetett függvény deriváltja, A láncszabály, Deriválás feladatok megoldásokkal.
Az érintő tehát valahogy együtt mozog a függvénnyel, így ha ki tudjuk számolni a függvény érintőinek a meredekségét, akkor meg tudjuk mondani, hogy mit csinál
maga a függvény.
Számoljuk ki mondjuk ennek az érintőnek a meredekségét.
A meredekség azt jelenti, hogy ha egyet lépünk előre, akkor mennyit lépünk fölfelé.
A meredekség kiszámolásához segítségül hívunk egy másik pontot.
Először annak az egyenesnek számoljuk ki a meredekségét,
ami ezen a két ponton megy át.
Lássuk mekkora ennek az egyenesnek a meredeksége!
amennyit fölfele megy
amennyit előre megy
Ezt a meredekséget differencia hányadosnak nevezzük.
A szelő meredeksége a
differenciahányados:
Ez igazán remek, de eredetileg az érintő meredekségének kiszámolása volt a cél.
Nos úgy lesz ebből érintő, hogy -et elkezdjük közelíteni felé, és így a szelők egyre jobban közelítenek az érintőhöz.
Az érintő meredeksége tehát a szelők meredekségének a határértéke.
Ezt differenciál hányadosnak nevezzük, ez a derivált.
Az érintő meredeksége
a differenciál hányados:
az pontban a derivált
Egy függvény deriváltja tehát azt mondja meg, hogy milyen meredek érintő húzható a függvény grafikonjához.
Az függvény deriváltjának jelölésére az van forgalomban.
Lássuk melyik függvénynek mi a deriváltja!
A konstans függvények deriváltja nulla.
Például egy konstans függvény és
A hatványfüggvények deriváltja
például deriváltja
Ha úgy adódik, hogy ilyen gyökös izéket kell deriválni, azt ugyanígy kell:
és a derivált
Az egy biztos pont az életünkben, ugyanis deriváltja önmaga:
Az deriváltja kicsit rondább:
Itt van például ez, hogy
nos ennek a deriváltja nem mert itt x a kitevőben van.
és ez a bizonyos egy konkrét szám, nevezetesen e alapú logaritmus 5, de aggodalomra semmi ok, a számológéppel ki tudjuk számolni:
Ez igazán remek, de maradjunk inkább annál, hogy .
Aztán itt van az emlegetett deriváltja:
Az egyéb logaritmusok deriváltja pedig
például 10-es alapú logaritmus, így hát a=10 és a derivált:
Aztán itt jönnek a trigonometrikus függvények.
A szinusz deriváltja koszinusz, a koszinusz deriváltja mínusz szinusz.
A tangens deriváltja
na az már jóval barátságtalanabb, a többiről nem is beszélve.
Most pedig jöjjenek a deriválási szabályok!
És itt jön a legviccesebb, az összetett függvény deriválási szabálya.
Van itt egy függvény, ez még nem összetett.
Akkor válik összetett függvénnyé, ha x helyett mondjuk az van, hogy
Na ez már összetett függvény, és a szabály szerint úgy kell deriválni, hogy először deriváljuk a külső függvényt, ami az, hogy
aztán megszorozzuk a belső függvény deriváltjával.
Vagy itt van egy másik.
Ez nem összetett függvén, hanem egy ártatlan kis összeg.
De ha ez az egész a negyediken van,
na akkor már összetett függvény.
A külső függvény itt az, hogy
aminek a deriváltja, ahogyan lenni szokott
aztán itt is szorozni kell még a belső függvény deriváltjával.
És itt van például ez.
A külső függvény deriváltja
Most pedig elérkezett az idő, hogy szerencsét próbáljunk
a deriválás feladatokkal.
Van itt egy függvény.
Ha néhány pontjában érintőt húzunk a függvényhez,
akkor az látszik, hogy ahol az érintő fölfelé megy, ott a függvény növekszik,
ahol az érintő lefelé megy, ott a függvény csökken.
Ott pedig, ahol az érintő vízszintesen megy, a függvénynek minimuma van,
de tulajdonképpen lehet maximuma is.
Mi az a deriválás, Deriváltak kiszámolása, Differencia hányados, Differenciál hányados, Alapderiváltak, Deriválási szabályok, Összeg deriváltja, Szorzat deriváltja, Hányados deriváltja, Összetett függvény deriváltja, A láncszabály, Deriválás feladatok megoldásokkal.
Az érintő tehát valahogy együtt mozog a függvénnyel, így ha ki tudjuk számolni a függvény érintőinek a meredekségét, akkor meg tudjuk mondani, hogy mit csinál
maga a függvény.
Számoljuk ki mondjuk ennek az érintőnek a meredekségét.
A meredekség azt jelenti, hogy ha egyet lépünk előre, akkor mennyit lépünk fölfelé.
A meredekség kiszámolásához segítségül hívunk egy másik pontot.
Először annak az egyenesnek számoljuk ki a meredekségét,
ami ezen a két ponton megy át.
Lássuk mekkora ennek az egyenesnek a meredeksége!
amennyit fölfele megy
amennyit előre megy
Ezt a meredekséget differencia hányadosnak nevezzük.
A szelő meredeksége a
differenciahányados:
Ez igazán remek, de eredetileg az érintő meredekségének kiszámolása volt a cél.
Nos úgy lesz ebből érintő, hogy -et elkezdjük közelíteni felé, és így a szelők egyre jobban közelítenek az érintőhöz.
Az érintő meredeksége tehát a szelők meredekségének a határértéke.
Ezt differenciál hányadosnak nevezzük, ez a derivált.
Az érintő meredeksége
a differenciál hányados:
az pontban a derivált
Egy függvény deriváltja tehát azt mondja meg, hogy milyen meredek érintő húzható a függvény grafikonjához.
Az függvény deriváltjának jelölésére az van forgalomban.
Lássuk melyik függvénynek mi a deriváltja!
A konstans függvények deriváltja nulla.
Például egy konstans függvény és
A hatványfüggvények deriváltja
például deriváltja
Ha úgy adódik, hogy ilyen gyökös izéket kell deriválni, azt ugyanígy kell:
és a derivált
Az egy biztos pont az életünkben, ugyanis deriváltja önmaga:
Az deriváltja kicsit rondább:
Itt van például ez, hogy
nos ennek a deriváltja nem mert itt x a kitevőben van.
és ez a bizonyos egy konkrét szám, nevezetesen e alapú logaritmus 5, de aggodalomra semmi ok, a számológéppel ki tudjuk számolni:
Ez igazán remek, de maradjunk inkább annál, hogy .
Aztán itt van az emlegetett deriváltja:
Az egyéb logaritmusok deriváltja pedig
például 10-es alapú logaritmus, így hát a=10 és a derivált:
Aztán itt jönnek a trigonometrikus függvények.
A szinusz deriváltja koszinusz, a koszinusz deriváltja mínusz szinusz.
A tangens deriváltja
na az már jóval barátságtalanabb, a többiről nem is beszélve.
Most pedig jöjjenek a deriválási szabályok!
És itt jön a legviccesebb, az összetett függvény deriválási szabálya.
Van itt egy függvény, ez még nem összetett.
Akkor válik összetett függvénnyé, ha x helyett mondjuk az van, hogy
Na ez már összetett függvény, és a szabály szerint úgy kell deriválni, hogy először deriváljuk a külső függvényt, ami az, hogy
aztán megszorozzuk a belső függvény deriváltjával.
Vagy itt van egy másik.
Ez nem összetett függvén, hanem egy ártatlan kis összeg.
De ha ez az egész a negyediken van,
na akkor már összetett függvény.
A külső függvény itt az, hogy
aminek a deriváltja, ahogyan lenni szokott
aztán itt is szorozni kell még a belső függvény deriváltjával.
És itt van például ez.
A külső függvény deriváltja
Most pedig elérkezett az idő, hogy szerencsét próbáljunk
a deriválás feladatokkal.