- Algebra, betűs kifejezések használata
- Nevezetes azonosságok, binomiális tétel
- Hatványozás, hatványazonosságok, normálalak
- Gyökvonás, gyökös azonosságok, gyöktelenítés
- Halmazok
- Gráfok
- Bizonyítási módszerek, matematikai logika
- Számelmélet, számrendszerek
- Egyenes arányosság, fordított arányosság
- Arányos osztás, szöveges feladatok arányos osztással
- Elsőfokú egyenletek
- Függvények
- Elsőfokú függvények
- Függvények ábrázolása
- Másodfokú egyenletek
- Egyenlőtlenségek
- Pontok, egyenesek, síkok, szögek, a geometria alapjai
- Síkidomok, háromszögek, négyszögek, sokszögek
- A kör
- A Pitagorasz-tétel
- Egybevágósági transzformációk
- Mértékegységek és mértékegység-átváltás
- Abszolútértékes egyenletek és egyenlőtlenségek
- Egyenletrendszerek
- Gyökös azonosságok és gyökös egyenletek
- Szöveges feladatok
- Középpontos hasonlóság
- Trigonometria a síkgeometriában
- Kombinatorika
- Exponenciális egyenletek és egyenlőtlenségek
- Logaritmus, logaritmusos egyenletek, egyenlőtlenségek
- Százalékszámítás
- Kamatos kamat és pénzügyi számítások
- Számtani és mértani sorozatok
- Trigonometrikus egyenletek és egyenlőtlenségek
- Exponenciális, logaritmusos és trigonometrikus egyenletrendszerek (emelt)
- Szinusztétel és koszinusztétel
- Feladatok függvényekkel
- Vektorok
- Koordinátageometria
- Térgeometria
- Statisztika
- Valószínűségszámítás
- Geometriai valószínűség
- A várható érték
- A parabola (emelt szint)
- A teljes indukció (emelt szint)
- Vegyes emelt szintű feladatok
- Sorozatok határértéke (emelt szint)
- Sorozatok monotonitása és korlátossága (emelt szint)
- Függvények határértéke és folytonossága (emelt szint)
- Deriválás (emelt szint)
- Függvényvizsgálat, szélsőérték feladatok (emelt szint)
- Függvények érintője (emelt szint)
- Az integrálás (emelt szint)
Másodfokú egyenletek
Másodfokú egyenlet megoldóképlete
Ha a másodfokú egyenlet így néz ki:
\( a x^2 + bx + c = 0 \)
Akkor a megoldóképlet:
\( x_{1,2} = \frac{ -b \pm \sqrt{b^2-4ac} }{2a} \)
Diszkrimináns
A másodfokú egyenlet megoldóképletének gyök alatti részét nevezzük diszkriminánsnak.
\( D = b^2 -4ac \)
Ez dönti el, hogy a másodfokú egyenletnek hány valós megoldása lesz.
Ha a diszkrimináns nulla, akkor csak egy.
Ha a diszkrimináns pozitív, akkor az egyenletnek két valós megoldása van.
Ha pedig negatív, akkor az egyenletnek nincs valós megoldása.
Másodfokú egyenlet gyöktényezős alakja
Az $ax^2+bx+c=0$ alakú másodfokú egyenlet gyöktényezős alakja:
\( ax^2 + bx + c = a (x-x_1)(x-x_2) \)
Viète-formulák
A Viète-formulák nem valami titkós gyógyszer hatóanyag, hanem a másodfokú egyenlet gyökei és együtthatói közötti összefüggéseket írja le:
\( x_1 + x_2 = \frac{-b}{a} \qquad x_1 x_2 = \frac{c}{a} \)
Olyankor, amikor a másodfokú tag együtthatója 1, a Viète-formulák is egyszerűbbek:
\( x^2 + px + q = 0 \qquad x_1 + x_2 = -p \qquad x_1 x_2 = q \)
Oldd meg az alábbi egyenleteket.
a) \( 3x^2-14x+8=0 \)
b) \( -2x^2+5x-3=0 \)
c) \( 4x + \frac{9}{x}=12 \)
d) \( x^2-6x+10=0 \)
Oldd meg az alábbi egyenleteket.
a) \( x^2+17x+16=0 \)
b) \( x^2+7x+12=0 \)
c) \( x^2-10x+20=0 \)
d) \( x^2-6x-16=0 \)
e) \( 3x^2-12x-15=0 \)
f) \( 4x^2+11x-3=0 \)
Oldd meg az alábbi egyenleteket.
a) \( \frac{16}{x-4}=3x-20 \)
b) \( \frac{x}{x+4}=\frac{32}{(x+4)(x-4)} \)
c) \( \frac{x-3}{x+3}+\frac{x+3}{x-3}=\frac{26}{x^2-9} \)
Alakítsd szorzattá.
a) \( x^2-6x-16=0 \)
b) \( x^2-7x+12=0 \)
c) \( 3x^2-14x+8=0 \)
Milyen \( A \) paraméter esetén van egy darab megoldása az egyenletnek?
a) \( x^2+2x+A=0 \)
b) \( x^2-Ax-3=0 \)
c) \( Ax^2+4x+1=0 \)
Oldd meg az alábbi egyenleteket.
a) \( x^6-9x^3+8=0 \)
b) \( 4x^5-9x^4-63x^3=0 \)
c) \( x^9-7x^6-8x^3=0 \)
a) A $p$ paraméter mely értéke esetén lesz az alábbi egyenletnek gyöke a -2 és a 6?
\( x^2+p \cdot x - 12 = 0 \)
b) Milyen $p$ paraméter esetén lesz két különböző pozitív valós megoldása ennek az egyenletnek
\( x^2 + p \cdot x + 1 = 0 \)
c) Milyen $p$ paraméterre lesz az egyenletnek pontosan egy megoldása?
\( \frac{x}{x-2} = \frac{p}{x^2-4} \)
Oldjuk meg ezt az egyenletet:
\( \frac{2x+9}{x+1}-2=\frac{7}{9x+11} \)
Oldjuk meg ezt az egyenletet:
\( \frac{1}{x-3}+\frac{2}{x+3}=\frac{3}{x^2-9} \)
Oldjuk meg ezt az egyenletet:
\( \frac{x+1}{x-9}-\frac{8}{x-5}=\frac{4x+4}{x^2-14x+45} \)
Oldjuk meg ezt az egyenletet:
\( \frac{x-2}{x+2}+\frac{x+2}{x-2}=\frac{10}{x^2-4} \)
Szuper-érthetően elmeséljük hogyan kell megoldani a másodfokú egyenleteket, megnézzük a megoldóképletet és rengeteg példán keresztül azt is, hogy hogyan kell használni. Kiderül mi a másodfokú egyenlet megoldóképletének diszkrimnánsa és az is, hogy mire jó tulajdonképpen. Megnézzük, hogyan lehet másodfokú kifejezéseket szorzattá alakítani. A gyöktényezős felbontás. Megnézzük milyen összefüggések vannak egy másodfokú kifejezés együtthatói és gyökei között. Viete-formulák, gyökök és együtthatók közötti összefüggések. Nézünk néhány paraméteres másodfokú egyenletet, kiderítjük, hogy milyen paraméterre van az egyenletnek nulla vagy egy vagy két megoládsa. A másodfokú egyenlet diszkriminánsa. Olyan egyenletek, amelyek negyed vagy ötödfokúak, de mégis vissza tudjuk vezetni másodfokú egyenletekre. Új ismeretlen bevezetése és a kiemelés lesznek a szövetségeseink.