Középiskolai matek (teljes) epizód tartalma:
Itt röviden és szuper-érthetően elmeséljük neked, hogy mi az a logaritmus és hogyan kell megoldani logaritmusos egyenleteket. A logaritmus fogalma, Logaritmus azonosságok, Logaritmusos egyenletek, Hogyan oldjunk meg logaritmusos egyenleteket?
Egy baktériumtenyészet generációs ideje 25 perc, ami azt jelenti, hogy ennyi idő alatt duplázódik meg a baktériumok száma a tenyészetben. Kezdetben 5 milligramm baktérium volt a tenyészetben. Hány perc múlva lesz a tenyészetben 30 milligramm baktérium?
Készítsünk erről egy rajzot.
Azt, hogy éppen hány milligramm baktériumunk van, ezzel a kis képlettel kapjuk meg:
A történet végén 30 milligramm baktériumunk van.
Ezt az egyenletet kéne valahogy megoldanunk.
Valahogy így…
Ehhez az kell, hogy a 2x önállóan álljon. Ne legyen megszorozva senkivel.
Most jön a számológép, megnyomjuk rajta azokat a gombokat, hogy log, aztán 2 aztán 6.
Ha a világnak ahhoz a szerencsétlenebbik feléhez tartozunk, akiknek a számológépén csak sima log van…
Nos, akkor egy kis trükkre lesz szükség.
De így is kijön.
Itt az x=2,585 nem azt jelenti, hogy ennyi perc telt el…
Azt jelenti, hogy x=2,585 generációnyi idő telt el.
64,625 perc
Egy másik baktériumtenyészetben 40 perc alatt 3 szorosára nő a baktériumok száma. Mennyi a generációs idő, vagyis hány perc alatt duplázódik meg a baktériumok száma?
Kezdetben van valamennyi baktérium.
Aztán megduplázódik…
aztán megint megduplázódik.
És így tovább.
A mi történetünkben háromszorosára nő a baktériumok száma:
Megint jön a számológép és megnyomjuk rajta azokat a gombokat, hogy log, aztán 2 aztán 3.
Vagy ha az előbb így nem tudtuk kiszámolni, akkor feltehetően most se.
Ilyenkor segít nekünk ez a trükk.
És most nézzük, hogyan tovább.
Az x=1,585 azt jelenti, hogy ennyi generációs idő telt el 40 perc alatt.
Vagyis egy generációs idő hossza…
25,24 perc.
A baktériumok száma 25,24 perc alatt duplázódik meg.
A radioaktív anyagok felezési ideje azt jelenti, hogy mennyi idő alatt csökken a radioaktív anyagban az atommagok száma a felére. A 239-plutónium felezési ideje például 24 ezer év, a 90-stronciumé viszont csak 25 év.
Ez a remek kis képlet adja meg a radioaktív bomlás során az atommagok számát az idő függvényében:
Egy 90-stronciummal szennyezett területen hány százalékkal csökken 40 év alatt a radioaktív atommagok száma? Mennyi idő alatt csökken a 12,5%-ára a 90-stroncium mennyisége? A T felezési idő 25 év, és az alábbi összefüggés áll fenn:
Lássuk, mi történik 40 év alatt:
40 év alatt tehát a 33%-ára csökken a 90-stroncium atommagok száma.
Most nézzük, mennyi idő alatt csökken a 90%-ára az atommagok száma.
Tehát úgy néz ki, hogy 3,8 év alatt csökken 90%-ára az atommagok száma.
Egy anyagban a radioaktív atommagok száma 30 év alatt 12%-kal csökken. Mekkora a felezési idő? Mennyi idő alatt csökken 50%-ról 10%-ra az anyagban található radioaktív atomok száma?
Itt jön a mi kis képletünk:
30 év alatt 12%-kal csökkent:
Na, ez így sajna nem túl jó…
Ha valami 12%-kal csökken, akkor 88% lesz.
A felezési idő tehát 162,7 év.
Most nézzük, hogy mennyi idő alatt csökken 50%-ról 10%-ra a radioaktív atomok száma:
377,8 év alatt csökken 50%-ról 10%-ra.
Hát, ennyi.
Középiskolai matek (teljes) epizód.