Független és kizáró események | mateking
 

Középiskolai matek epizód tartalma:

Szuper-érthetően elmeséljük, mikor független és mikor kizáró két esemény. Feladatokat is nézünk független és kizáró eseményekre. Függetlenség, Független események, Kizáró események, Eseményalgebra.


A képsor tartalma

Megismerkedünk a valószínűségszámítás alapjaival, hogy mik azok a valószínűségek, hogyan kell őket kiszámolni, megnézzük mi az a klasszikus valószínűség és, hogy még milyen nem klasszikus valószínűségek lehetnek. A középiskolai matek felelevenítésével kezdjük, ahol elvileg mindenki tanult valószínűségszámítást. De csak elvileg, éppen ezért teljesen az alapoktól kezdünk és nem építünk a középiskolai matematika tanulmányokra. Kezdjük tehát a középiskolai matematika tananyag összefoglalását és átismétlését. A középiskolás matek addig jut el, hogy klasszikus valószínűségszámítás a kedvező/összes módszerrel, illetve minimálisan érinti a függetlenség, kizáróság témáját. Mi a középiskolai matekot elég hamar magunk mögött hagyva egészen valószínűségszámítás feladatokkal fogunk majd foglalkozni. Kezdjük is.A meglévő eseményeinkből újabb eseményeket készíthetünk.

Lássuk mekkora ezeknek a valószínűsége.

Nos ezeket érdemes megjegyezni, most pedig folytassuk valami érdekesebbel.

Az A és B eseményt egymástól függetlennek nevezünk, ha teljesül rájuk, hogy

Az előző dobókockás példánkban az A esemény az volt, hogy párosat dobunk, a B esemény pedig az, hogy 2-nél nagyobbat. Nézzük meg, hogy ezek függetlenek-e.

Ez jónak tűnik, úgyhogy az A és B események tehát függetlenek.

Itt van aztán egy C esemény is.

Nézzük meg, hogy vajon B és C függetlenek-e.

Hát nem.

Az A és B eseményt kizárónak nevezünk, ha

Nézzük meg mi a helyzet a példánkban szereplő eseményekkel.

Nos úgy látszik ezek nem kizárók.

A és C viszont kizárók.

Egy biztosítónál az ügyfelek 70%-ának van autóbiztosítása, 60%-ának lakásbiztosítása és 90%-uknak a kettő közül legalább az egyik.

Legyen az A esemény, hogy egy ügyfélnek van autóbiztosítása a B esemény pedig, hogy van lakásbiztosítása. Független-e a két esemény?

A két esemény akkor független, ha

Nos lássuk csak mennyi lehet .

A jelek szerint tehát nem függetlenek.

És egyébként nem is kizárók, mert

Egy másik biztosítónál az ügyfelek 80%-ának van autóbiztosítása és az ügyfelek 20%-a rendelkezik lakásbiztosítással úgy, hogy autóbiztosítása nincsen.

Hány százalékuknak van lakásbiztosítása, ha az autó és lakásbiztosítás egymástól független?

Nos van egy ilyen, hogy

Tehát az ügyfelek 2/3-ának vagyis 66%-nak van lakásbiztosítása.

Ez igazán remek, most pedig folytassuk valami egészen érdekessel.

Van egy dobókockánk, amivel egyszer dobunk. Az A esemény legyen az, hogy páratlant dobunk, a B esemény pedig az, hogy 3-nál nagyobbat.

Az A esemény valószínűségét a szokásos módon kapjuk meg.

Megszámoljuk hány esetben következik be és ezt elosztjuk az összes eset számával.

Eddig ebben nincsen semmi izgalmas.

Az izgalmak most jönnek.

Egy lépésre vagy attól, hogy a matek melléd álljon és ne eléd.
  • Zseniális bármilyen matek ismeret elsajátításához.

    Ákos, 19
  • Otthonról elérhető és olcsóbb, mint egy magántanár és akkor használom, amikor akarom.

    Milán, 19
  • Ez a legjobban áttekinthető, értelmezhető, használható és a legolcsóbb tanulási lehetőség.

    Eszter, 23
  • Felsőbb éves egyetemisták ajánlották, "kötelező" címszóval.
    Ricsi, 19
BelépekvagyRegisztrálok Back arrow Ugrás az
összeshez