Jump to navigation

Belépés
  • Elfelejtettem a jelszavam
Regisztráció
 
  • Hogyan működik a mateking?
  • Mire jó a matek?
  • Matek érettségi
  • Képletgyűjtemény
  • Feladatgyűjtemény
  • Rólunk
  • Matek 5. osztály próbaüzem
  • Matek 6. osztály próbaüzem
  • Matek 7. osztály próbaüzem
  • Matek 8. osztály próbaüzem
  • Matek 9. osztály
  • Matek 10. osztály
  • Matek 11. osztály
  • Matek 12. osztály
  • Középiskolai matek (teljes)
  • Középszintű matek érettségi
  • Emelt szintű matek érettségi
  • Egyetemi matek alapozó
Összes egyetemi tantárgy
Legnépszerűbb tantárgyak:
  • Analízis 1
  • Analízis 2
  • Analízis 3
  • Valószínűségszámítás
  • Lineáris algebra
  • Diszkrét matematika
  • Statisztika

mateking

Login
 

Középszintű matek érettségi

Kategóriák
  • Valószínűségszámítás (13,4 pont)
  • Számtani és mértani sorozatok (10,4 pont)
  • Statisztika (8,8 pont)
  • Térgeometria (8,7 pont)
  • Függvényekkel kapcsolatos feladatok (8,6 pont)
  • Koordinátageometria (6 pont)
  • Szöveges feladatok (5,5 pont)
  • Halmazok (5,3 pont)
  • Síkgeometria (5,3 pont)
  • Trigonometrikus geometria feladatok (4,9 pont)
  • Kombinatorika (4,5 pont)
  • Szinusztétel és koszinusztétel (4 pont)
  • Exponenciális függvények és egyenletek (3,2 pont)
  • Másodfokú egyenletek (3,1 pont)
  • Gráfok (2,7 pont)
  • Százalékszámítás és pénzügyi számítások (2,6 pont)
  • Elsőfokú függvények (1,7 pont)
  • Számelmélet (1,5 pont)
  • Egyenlőtlenségek (1,5 pont)
  • Vektorok (0,8 pont)
  • Algebra, nevezetes azonosságok
  • Egyenletrendszerek
  • Bizonyítási módszerek, matematikai logika
  • Abszolútértékes egyenletek és egyenlőtlenségek
  • Gyökös azonosságok és gyökös egyenletek
  • Logaritmus, logaritmikus egyenletek
  • Trigonometrikus egyenletek és egyenlőtlenségek
  • Egybevágósági transzformációk
  • A várható érték

Számelmélet (1,5 pont)

  • Epizódok
  • Feladatok
  • Érettségik
  • Képletek
01
 
Oszthatóság, maradékos osztás, oszthatósági szabályok
02
 
Legnagyobb közös osztó, relatív prímek
03
 
Prímek
03
 
Prímek
04
 
A számelmélet alaptétele és a prímtényezős felbontás
05
 
A legnagyobb közös osztó (LNKO)
06
 
A legkisebb közös többszörös (LKKT)

Válaszd ki, hogy melyik év középszintű érettségi feladataival szeretnél gyakorolni.

2020 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 


 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2020 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 


 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2019 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 


 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2019 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2018 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2018 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2017 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2017 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2016 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2016 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2015 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2015 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST   

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2014 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2014 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2013 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2013 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2012 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

10-zel oszthatóság

10-zel azok a számok oszthatók, amik 0-ra végződnek.

Megnézem a kapcsolódó epizódot

11-gyel oszthatóság

11-gyel akkor osztható egy szám, ha hátulról kezdve $+-+- \dots$ előjelekkel összeadjuk a számjegyeket, akkor az így kapott szám osztható 11-gyel.

Megnézem a kapcsolódó epizódot

2-vel oszthatóság

Egy szám akkor osztható 2-vel, ha páros, azaz 0, 2, 4, 6, vagy 8-ra végződik.

Megnézem a kapcsolódó epizódot

3-mal oszthatóság

Egy szám akkor osztható 3-mal, ha a számjegyeinek összege osztható 3-mal.

Megnézem a kapcsolódó epizódot

4-gyel oszthatóság

Egy szám akkor osztható 4-gyel, ha az utolsó két jegyéből alkottot szám osztható 4-gyel.

Megnézem a kapcsolódó epizódot

5-tel oszthatóság

Egy szám akkor osztható 5-tel, ha az utolsó számjegye 0 vagy 5.

Megnézem a kapcsolódó epizódot

6-tal oszthatóság

6-tal azok a számok oszthatók, amik 2-vel és 3-mal is oszthatók.

Ezek éppen a 3-mal osztható páros számok.

Megnézem a kapcsolódó epizódot

9-cel oszthatóság

Egy szám akkor osztható 9-cel, ha a számjegyeinek összege osztható 9-cel.

Megnézem a kapcsolódó epizódot

Maradékos osztás

Legyenek $a$ és $b$ természetes számok. Ekkor felírhatók

$a=q \cdot b + r \qquad 0<r<b$

Ahol $q$ és $r$ is természetes számok és $q$ az osztás hányadosa, $r$ pedig a maradék.

Megnézem a kapcsolódó epizódot

Oszthatóság

Az $a$ egész számnak a $b$ egész szám osztója, ha létezik olyan $q$ egész szám, hogy $a=b \cdot q$.

Megnézem a kapcsolódó epizódot

Legnagyobb közös osztó

Az $a$ és $b$ szám legnagyobb közös osztója az a $d$ pozitív szám, amire $ d \mid a$ és $d\mid b$, és e közös osztók közül ez a legnagyobb.

Jelölés: $d=(a,b)$

Megnézem a kapcsolódó epizódot

Néhány oszthatósági szabály

Ha $ a \mid c$ és $ b \mid c$ és $(a,b)=1$ akkor $ab \mid c$

Ha $c \mid ab$ és $(a,c)=1$ akkor $c \mid b$

Megnézem a kapcsolódó epizódot

Relatív prímek

$a$ és $b$ relatív prímek, ha $(a,b)=1$

Megnézem a kapcsolódó epizódot

Prímek

Azokat a pozitív egész számokat, amelyeknek az 1-en és önmagukon kívül nincsen más pozitív egész osztója, prímeknek nevezzük.

Megnézem a kapcsolódó epizódot

Számelmélet alaptétele

A nullától és az egytől különböző összes $n$ pozitív egész szám felbontható prímek szorzatára a sorrendtől eltekintve egyértelműen.

$ n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_k^{\alpha_k}$ ahol $k\in Z^{+}$

Itt $k$ a felbontásban szereplő különböző prímek száma.

Megnézem a kapcsolódó epizódot

Legkisebb közös többszörös (LKKT)

A legkisebb közös többszörös megtalálásának lépései:

  1. Elkészítjük a prímtényezős felbontást
  2. Vesszük az összes prímet a két prímtényezős felbontásból
  3. Mindegyik prím a nagyobbik kitevőt kapja.
Megnézem a kapcsolódó epizódot

1.

a) Osztható-e 3-mal az 5728 és a 4758?

b) Osztható-e 4-gyel az 52742 és a 61524?

c) Osztható-e 6-tal a 3714?

d) Osztható-e 9-cel a 4326 és a 4257?

e) Osztható-e 11-gyel a 3718

Megnézem, hogyan kell megoldani

2.

Mennyi a 36 és 25 legnagyobb közös osztója?

Megnézem, hogyan kell megoldani

3.

 

a) Bizonyítsuk be, hogy a 3-nál nagyobb ikerprímszámok összege osztható 12-vel!

b) Melyek azok a \( p \) prímszámok, amelyekre \( 2p-1 \) és \( 2p+1 \) is prím?

Megnézem, hogyan kell megoldani

4.

Mit nevezünk prímszámoknak?

Megnézem, hogyan kell megoldani

5.

Adjuk meg az 1960 prímtényezős felbontását.

Megnézem, hogyan kell megoldani

6.

a) Számoljuk ki a 108 és a 360 legnagyobb közös osztóját.

b) Számoljuk ki a 37 800 és 39 600 számok legnagyobb közös osztóját.

Megnézem, hogyan kell megoldani

7.

a) Számoljuk ki a 108 és 360 legkisebb közös többszörösét.

b) Számoljuk ki a 37 800 és a 39 600 számok legkisebb közös többszörösét.

Megnézem, hogyan kell megoldani

A témakör tartalma


Legnagyobb közös osztó, relatív prímek

Prímek

Oszthatóság, maradékos osztás, oszthatósági szabályok

A számelmélet alaptétele és a prímtényezős felbontás

Prímek

A legnagyobb közös osztó (LNKO)

A legkisebb közös többszörös (LKKT)

Kapcsolatfelvétel
  • Segítségnyújtás
  • Hibabejelentés
  • Kapcsolatfelvétel
  • Mateking torrent bejelentés
Rólunk
  • A projektről
  • Médiamegjelenések
  • Legyen élmény a matek
  • Mire jó a matek?
Tartalomjegyzék
  • Középiskolai matek
  • Analízis 1
  • Analízis 2
  • Analízis 3
  • Lineáris algebra
  • Valószínűségszámítás
  • Diszkrét matematika
  • Statisztika
  • További tantárgyak
  • Egyetemi tematikák
  • Matek érettségi
GYIK Általános szerződési feltételek Adatkezelési tájékoztató Felhasználás oktatási célra

Cookie-használat módosítása

© Minden jog fenntartva!

Az oldalon található tartalmak részének vagy egészének másolása, elektronikus úton történő tárolása vagy továbbítása, harmadik fél számára nyújtott oktatási célra való hasznosítása kizárólag az üzemeltető írásos engedélyével történhet. Ennek hiányában a felsorolt tevékenységek űzése büntetést von maga után!

barion
macroweb
  • Tantárgyaim