Barion Pixel Szinguláris és reguláris mátrixok | mateking
 

Lineáris algebra epizód tartalma:

Itt röviden és szuper-érthetően meséljük el neked, hogy mik azok a szinguláris és reguláris mátrixok. | Determináns, Rang, Oszlopvektor, Sorvektor, Homogén lineáris egyenletrendszer. |

A képsor tartalma

SZINGULÁRIS ÉS REGULÁRIS MÁTRIXOK

Az -es mátrixokat két nagy csoportba sorolhatjuk. Vannak azok a mátrixok melyeknek a determinánsa nulla és vannak azok, amiknek nem.

Ez a kis eltérés valójában hatalmas szakadékot jelent a kétféle csoport között.

AZ MÁTRIX REGULÁRIS

LÉTEZIK INVERZ MÁTRIX

RANG=n

AZ MÁTRIX OSZLOPVEKTORAIBÓL ÁLLÓ

VEKTORRENDSZER LINEÁRISAN FÜGGETLEN

AZ EGYENLETRENDSZERNEK

CSAK EGY MEGOLDÁSA VAN

AZ HOMOGÉN LINEÁRIS

EGYENLETRENDSZERNEK CSAK EGY

MEGOLDÁSA VAN (A TRIVIÁLIS MEGOLDÁS)

AZ MÁTRIX SZINGULÁRIS

NEM LÉTEZIK INVERZ MÁTRIX

RANG<n

AZ MÁTRIX OSZLOPVEKTORAIBÓL ÁLLÓ

VEKTORRENDSZER LINEÁRISAN ÖSSZEFÜGGŐ

AZ EGYENLETRENDSZERNEK

VAGY VÉGTELEN SOK MEGOLDÁSA VAN

VAGY NINCS MEGOLDÁSA

AZ HOMOGÉN LINEÁRIS

EGYENLETRENDSZERNEK VÉGTELEN

SOK MEGOLDÁSA VAN

Itt van például egy mátrix.

Nézzük meg milyen paraméter esetén létezik inverze, milyen paraméterre lesz a determinánsa éppen 0, illetve milyen paraméterre lesz az

egyenletrendszernek végtelen sok megoldása.

Az összes kérdésre egyszerre megkapjuk a választ, ha kiszámoljuk a mátrix determinánsát.

Akkor létezik inverz, ha a mátrix reguláris, vagyis a determinánsa nem nulla:

Akkor lesz a determináns éppen nulla, ha

És akkor lesz az egyenletrendszernek végtelen sok megoldása, ha a mátrix szinguláris, vagyis a determinánsa nulla,

Egy lépésre vagy attól, hogy a matek melléd álljon és ne eléd.
  • Nagyon jó árba van, valamint jobb és érthetőbb, mint sok külön matek tanár.

    Márk, 22
  • Olyan weboldal, ami még egy vak lovat is megtanítana integrálni.

    Petra, 26
  • A mateking miatt sikerült az érettségi és az összes egyetemi matekos tárgyam.

    Míra, 21
  • Zseniális bármilyen matek ismeret elsajátításához.

    Ákos, 19
BelépekvagyRegisztrálok Back arrow Ugrás az
összeshez