20 témakör, 369 rövid és szuper érthető epizód

Ez az ütős Matek 1 Corvinus kurzus segít mindent azonnal megérteni és sikeresen vizsgázni. 369 rövid és szuper-érthető epizód és 32 teszt segítségével 20 témakörön keresztül vezet végig az őrülten jó Matek 1 Corvinus rögös útjain. Mindezt olyan laza stílusban, mintha csak a rántotta elkészítésének problémájáról lenne szó.

Tartalomjegyzék: 

A kurzus 20 szekcióból áll: Rémes előzmények, Függvények, Az inverzfüggvény, Sorozatok, Küszöbindex és monotonitás, Sorok, Függvények határértéke és folytonossága, Deriválás, Hatványsorok & Taylor sorok, Differenciálhatóság vizsgálata és az érintő egyenlete, Függvényvizsgálat, gazdasági feladatok, L'hospital-szabály, Taylor-polinom, Taylor-sor, Mátrixok, vektorok, Független és összefüggő vektorok, Lineáris egyenletrendszerek, Determináns, sajátérték, sajátvektor, Határozatlan integrálás, primitív függvény, Határozott integrálás, Kettős integrál, Kétváltozós függvények

FÜGGVÉNYEK ÁBRÁZOLÁSA ÉS FÜGGVÉNYTRANSZFORMÁCIÓK

EXPONENCIÁLIS ÉS LOGARITMUS FÜGGVÉNYEK

TRIGONOMETRIKUS FÜGGVÉNYEK ÉS AZ EGYSÉGKÖR

INVERZ FÜGGVÉNY

SOROZATOK

FÜGGVÉNYEK HATÁRÉRTÉKE

FOLYTONOSSÁG

  • Függvények folytonossága - Egy függvényt akkor nevezünk folytonosnak valamely pontban, ha itt a függvényérték és a határérték megegyezik. Lássuk miért is ennyire fontos ez.
  • Szakadás - Ha egy adott pontban a függvényérték és a határérték nem egyezik meg, akkor a függvénynek szakadása van az adott pontban. Ennek számos típusa lehet...
  • Megszüntethető szakadás - Ez olyankor van, ha a függvénynek létezik határértéke az adott pontban, de az nem egyezik meg a függvényértékkel.
  • Ugrás - Ez olyankor van, ha a függvénynek nem létezik határértéke az adott pontban, de van jobb és bal oldali véges határértéke.
  • Nem megszüntethető nem véges szakadás - Ez olyankor van, ha a függvénynek nem véges a határértéke az adott pontban.
  • Nem megszüntethető oszcilláló szakadás - Ez mindegyik közül a legszörnyűbb eset, ilyenkor a függvénynek jobb és bal oldali határértéke sincs.

DIFFERENCIÁLSZÁMÍTÁS

A DERIVÁLÁS ALKALMAZÁSAI, FÜGGVÉNYVIZSGÁLAT

SOROK

INTEGRÁLÁS, PRIMITÍV FÜGGVÉNY

  • Határozott és határozatlan integrálás - A határozott integrálással függvények görbéje alatti területeket tudunk kiszámolni, míg a határozatlan integrálással az úgynevezett primitív függvényt tudjuk meghatározni. A kétféle integrálás között a Newton-Leibniz formula létesít kapcsolatot.
  • Primitív függvény - Egy f(x) függvény primitív függvénye az a F(x) függvény, amelyet deriválva f(x)-et kapjuk.
  • Newton-Leibniz formula - A tétel, amely ezt a kapcsolatot leírja, az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
  • Alapintegrálok - Tekintsük át a fontosabb függvények integráljait.
  • Integrálási szabályok - Lássuk, milyen integrálási szabályok vannak...
  • Szorzatok integrálása - Lássuk, milyen módszerek vannak szorzatok integrálására.
  • Törtek integrálása - Lássuk, milyen módszerek vannak törtek integrálására.
  • Parciális integrálás - Ezzel a remek módszerrel szorzatokat tudunk integrálni úgy, hogy egy bonyolultabb integrálásból csinálunk egy egyszerűbb integrálást.
  • Összetett függvények integrálása - Összetett függvényeket általában akkor tudunk integrálni, ha azok meg vannak szorozva a belső függvényük deriváltjával. Van is erre egy remek kis képlet.
  • Helyettesítéses integrálás - Bizonyos esetekben érdemes bevezetni egy helyettesítést, amivel az integrálás egyszerűbbé válik. Nézzük meg, hogyan!
  • Parciális törtek - A racionális törtfüggvények integrálásához a függvényeket parciális törtekre kell bontani, majd a parciális törteket egyesével integrálni.
  • Racionális törtfüggvények integrálása - A racionális törtfüggvények integrálásához a függvényeket parciális törtekre kell bontani, majd a parciális törteket egyesével integrálni.
  • Polinomosztás - A parciális törtekre bontás előtt néha polinomosztás is kell. Nézzük mikor és hogyan.
  • Trigonometrikus függvények integrálása - A trigonometrikus kifejezések integrálása meglehetősen vicces feladat. Csak jó humorérzékűeknek ajánlott...

HATÁROZOTT INTEGRÁLÁS

  • Határozott és határozatlan integrálás - A határozott integrálással függvények görbéje alatti területeket tudunk kiszámolni, míg a határozatlan integrálással az úgynevezett primitív függvényt tudjuk meghatározni. A kétféle integrálás között a Newton-Leibniz formula létesít kapcsolatot.
  • Primitív függvény - Egy f(x) függvény primitív függvénye az a F(x) függvény, amelyet deriválva f(x)-et kapjuk.
  • Newton-Leibniz formula - A tétel, amely ezt a kapcsolatot leírja, az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
  • Két függvény közötti terület kiszámolása - Néhány tipikus feladat két függvény grafikonjai által közrezárt terület kiszámítására.
  • Improprius integrál - Végtelenbe nyúló tartományok területének kiszámolása.

KETTŐS INTEGRÁL

MÁTRIXOK

VEKTOROK

EGY KIS GEOMETRIA

VEKTORTEREK

  • Az axiómák - Végre valami izgalom...
  • Koordináták - A valós feletti n dimenziós vektortér jele Rn ahol n a vektorok koordinátáinak számát jelöli.
  • Lineárisan független vektorok - Egy vektorrendszer elemei linárisan függetlenek, ha egyik vektor sem állítható elő a többi segítségével.
  • Lineárisan összefüggő vektorok - Egy vektorrendszer elemei linárisan összefüggők, ha van olyan vektor közöttük, amelyik előállítható a többi vektor segítségével.
  • Generátorrendszer - Vektorknak egy halmaza, amely segítségével minden egyéb vektortérbeli vektor előállítható. Lássuk hogyan.
  • Bázis - A lineárisan független generátorrendszer.
  • Alterek - W altér V-ben, ha részhalmaza és maga is vektortér a V-beli műveletekre. Nos ez remek, de nézzük meg, mit is jelet mindez.
  • Rang - Vektorrendszer rangja és mátrix rangja.
  • Gram-Schmidt ortogonalizáció - Egy remek délutáni program, amivel egy bázisból olyan bázist lehet fabrikálni, ahol a bázisvektorok egymásra merőlegesek.

LINEÁRIS EGYENLETRENDSZEREK

A DETERMINÁNS, SAJÁTÉRTÉK, SAJÁTVEKTOR

  • A determináns definíciója - A determináns úgy működik, hogy minden négyzetes mátrixból csinál egy valós számot. Hogy miért, és, hogy hogyan, az mindjárt kiderül.
  • Sarrus szabály - Egy nem túl jó módszer a determináns kiszámolására.
  • A kifejtési tétel - Egy túl jó módszer a determináns kiszámplására.
  • Szinguláris és invertálható mátrixok - Azokat a mátrixokat nevezzük szingulárisnak, amelyek determinánsa nulla. Regulárisnak pedig azokat, amelyeknek nem nulla.
  • A determináns tulajdonságai - Remek tulajdonságai vannak a determinánsoknak.
  • Sajátvektor - Egy mátrix sajátvektora egy olyan nem nullvektor, ami azt tudja, hogy megszorozva a mátrixszal az eredeti vektor skalárszorosát kapjuk. Ez igazán remek, de, hogy pontosan miért, nos ez mindjárt kiderül.
  • Sajátérték - Egy mátrix sajátértéke egy valós szám, amely azt mondja meg, hogy a sajátvektor hányszorosát kapjuk akkor, ha azt a mátrixszal szorozzuk.
  • Karakterisztikus egyenlet - A sajátértékek kiszámolásához szükséges egyenlet.
  • A diagonális alak - Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix diagonális alakját. Lássuk ez miért ilyen roppant fontos.
  • Mátrixok definitsége - Hát ez is egy érdekes ügy.
  • Kvadratikus alakok - Éjszaka nem ajánlatos összefutni velük az utcán...
  • Kvadratikus alakok definitsége - A kvadratikus alakok mátrixa segít eldönteni a definitséget.

KÉTVÁLTOZÓS FÜGGVÉNYEK

  • Mik azok a kétváltozós függvények? - Néhány elképesztően izgalmas példa kétváltozós függvényekre.
  • Lokális szélsőértékek - A kétváltozós függvények minimumai és maximumai olyanok, mint hegycsúcsok és völgyek.
  • Nyeregpont - Ez egy speciális pont a kétváltozós függvények felületén, amely bizonyos irányok szerint maximum, míg más irányok mentén minimum.
  • Parciális deriválás - A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
  • x szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol x-et tekintjük változónak.
  • y szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol y-t tekintjük változónak.
  • Másodrendű deriváltak - Az első deriváltak tovább deriválása újra parciális deriválással történik. Így négy darab másodrendű deriváltat kapunk. Két tiszta másodrendű deriváltat és két vegyes másodrendű deriváltat.
  • Young tétel - A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.
  • Stacionárius pont - Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
  • Hesse mátrix - A másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen gyeregpontja van-e.
  • Érintősík - Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ezesetben most egy sík lesz az érintő.
  • Az érintősík normálvektora - Az érintősík normálvektora a parciális derivltakból keletkező vektor, amit gradiensnek vagy másként deriváltvektornak is neveznek.
  • Gradiens - A parciális derivltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
  • Deriváltvektor - A parciális derivltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
  • Iránymenti derivált - Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.
  • Implicit deriválás tétele - Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.

Rémes előzmények

  • -

    Mi az egység sugarú kör? Mi az a szinusz és koszinusz? Mire jó a szinusz és a koszinusz? Mi az a radián? Mi a kapcsolat a fok és a radián között?

  • -

    Az egységkör egy szöggel elforgatott egységvektorának végpontjának x koordinátáját nevezzük a szög koszinuszának

  • -

    Az egységkör egy szöggel elforgatott egységvektorának végpontjának y koordinátáját nevezzük a szög szinuszának.

  • -

    Szinuszt és koszinuszt tartalmazó egyenletek megoldásának lépései.

  • -

    Egy szög tangense a szög szinuszának és koszinuszának hányadosával egyenlő.

  • -

    Trigonometriai képlet összefoglaló. Összefüggések a tangens és kotangens között. A trigonometria alapegyenlete. Szögek kétszeresének szinusza és koszinusza.

  • -

    A függvény hozzárendelésének megfordításával kapjuk a függvény inverzfüggvényét, amennyiben a megfordított hozzárendelés is egy egyértelmű hozzárendelés.

Függvények

  • -

    A függvény értékkészlete azoknak az elemeknek a halmaza a B halmazban, amelyek hozzá vannak rendelve valamely A halmazbeli elemekhez.

  • -

    Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.

  • -

    Megnézzük, hogy melyik függvény hogyan néz ki, aztán megnézzük a külső és belső függvénytranszformációkat. Eltolás az x tengely mentén, eltolás az y tengely mentén, tükrözés, nyújtás.

  • -

    A függvény konvexitása megmondja, hogy a függvény szomorú vagy vidám hangulatban van.

  • -

    A függvény monotonitása lehet növekedő, csökkenő, szigorúan monton növekedő vagy szigorúan monoton csökkenő.

  • -

    Globális és lokális maximumok és minimumok.

  • -

    Mikor páros, mikor páratlan vagy éppen egyik sem egy függvény.

  • -

    Lássuk mik azok a polinomfüggvények, és hogyan kell őket ábrázolni.

Az inverzfüggvény

  • -

    A függvény hozzárendelésének megfordításával kapjuk a függvény inverzfüggvényét, amennyiben a megfordított hozzárendelés is egy egyértelmű hozzárendelés.

Sorozatok

Küszöbindex és monotonitás

  • -

    Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük.

  • -

    sorozatok egyik legfontosabb tulajdonsága a határértékük, ami azt jelenti, hogy mi történik a sorozattal ahogy egyre és egyre nagyobb indexű tagjait vizsgáljuk.

  • -

    Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük.

  • -

    A sorozat monotonitása lehet monton nő, monoton csökkenő, szigorúan monoton nő, szigorúan monoton csökkenő.

Sorok

Függvények határértéke és folytonossága

Deriválás

  • -

    Függvény konstansszorosának, két függvény összegének, szorzatának és hányadosának deriválási szabályai. Összetett függvények deriválási szabálya.

  • -

    Egy szelő egyenes meredeksége a differenciahányados.

  • -

    Egy függvény érintő egyenesének meredeksége a differenciálhányados.

  • -

    Konstans deriváltja, polinomok deriválási szabálya. Az exponenciális és logaritmus függvények deriválása. Trigonometrikus függvények deriváltjai.

Hatványsorok & Taylor sorok

  • -

    Ha $x_0$ a hatványsor középpontja, akkor az $x_0$ pont $r$ sugarú környezetét konvergencia tartománynak nevezzük, ahol $r$ a konvergenciasugár.

  • -

    hatványsorok konvergenciájának vizsgálata.

  • -

    Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...

  • -

    Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...

  • -

    Az $e^x$, lnx, sinx és cosx függvények Taylor sorai.

  • -

    A végtelen sorok egy speciális fajtája.

Differenciálhatóság vizsgálata és az érintő egyenlete

Függvényvizsgálat, gazdasági feladatok

L'hospital-szabály, Taylor-polinom, Taylor-sor

  • -

    határérték számítás csodafegyvere, egy szuper módszer, amivel nagyon sok bonyolult határérték gyorsan kiszámolható.

  • -

    Néhány exponenciális, logaritmusos és végtelenhez, nullához tartó nevezetes sorozatok határértékei.

  • -

    Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...

  • -

    Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...

  • -

    Az $e^x$, lnx, sinx és cosx függvények Taylor sorai.

  • -

    Amikor egy függvény x helyen lévő értékét szeretnénk közelíteni egy Taylor polinommal, akkor lesz egy kis hibánk, mivel a polinom nem teljesen követi a függvényt. Ennek a hibának a kifejezésére van a Lagrange-féle maradéktag. 

Határozatlan integrálás, primitív függvény

Határozott integrálás

  • -

    A Newton-Leibniz formula egy egyszerűen használható képlet a határozott integrál kiszámításához. Ez a tétel az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.

  • -

    Egy zárt intervallumon értelmezett függvény akkor Riemann integrálható, ha egyetlen olyan szám létezik, amely bármely alsó közelítő összegénél nagyobb egyenlő, és bármely felső közelítő összegénél kisebb egyenlő.

  • -

    Végtelenbe nyúló tartományok területének kiszámolása egy fontos függvénnyel.

  • -

    Forgástestek térfogatának és felszínének képletei határozott integrálással.

Kettős integrál

Kétváltozós függvények

  • -

    A kétváltozós függvények úgy működnek, hogy két valós számhoz rendelnek hozzá egy harmadik valós számot.

  • -

    A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.

  • -

    A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.

  • -

     másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen nyeregpontja van-e.

  • -

    Egy általános módszer, amivel kétváltozós függvények szélsőértékeit és nyeregpontjait lehet meghatározni

  • -

    Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.

  • -

    Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.

  • -

    A sík azon pontjainak összességét, amelyekben az $f$ függvény ugyanazt a konstans értéket veszi fel, az $f$ függvény szintvonalának nevezzük.

  • -

    Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ez esetben most egy sík lesz az érintő.

  • -

    A parciális deriváltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.

  • -

    Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.

  • -

    Egy függvény akkor implicit, ha $y$ nincs kifejezve, vagyis nem $y=\dots$ alakú.

  • -

    Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.