20 témakör, 270 rövid és szuper érthető lecke

Ez a remek Matek 1 Corvinus kurzus 270 rövid és szuper-érthető tananyag, 24 pdf és 32 tesztfeladatsor segítségével 20 témakörön keresztül vezet végig az izgalmas Matek 1 Corvinus rögös útjain. Mindezt olyan könnyed stílusban, mintha csak a rántotta elkészítésének problémájáról lenne szó.

Tartalomjegyzék: 

A kurzus 20 szekcióból áll: Rémes előzmények, Az inverzfüggvény, Függvények, Sorozatok, Küszöbindex és monotonitás, Sorok, Függvények határértéke és folytonossága, Deriválás, Differenciálhatóság vizsgálata és az érintő egyenlete, Függvényvizsgálat, gazdasági feladatok, L'hospital-szabály, Taylor-polinom, Taylor-sor, Mátrixok, vektorok, Független és összefüggő vektorok, Lineáris egyenletrendszerek, Determináns, sajátérték, sajátvektor, Határozatlan integrálás, primitív függvény, Határozott integrálás, Kettős integrál, Sorok, Kétváltozós függvények

FÜGGVÉNYEK ÁBRÁZOLÁSA ÉS FÜGGVÉNYTRANSZFORMÁCIÓK

EXPONENCIÁLIS ÉS LOGARITMUS FÜGGVÉNYEK

TRIGONOMETRIKUS FÜGGVÉNYEK ÉS AZ EGYSÉGKÖR

INVERZ FÜGGVÉNY

SOROZATOK

FÜGGVÉNYEK HATÁRÉRTÉKE

FOLYTONOSSÁG

  • Függvények folytonossága - Egy függvényt akkor nevezünk folytonosnak valamely pontban, ha itt a függvényérték és a határérték megegyezik. Lássuk miért is ennyire fontos ez.
  • Szakadás - Ha egy adott pontban a függvényérték és a határérték nem egyezik meg, akkor a függvénynek szakadása van az adott pontban. Ennek számos típusa lehet...
  • Megszüntethető szakadás - Ez olyankor van, ha a függvénynek létezik határértéke az adott pontban, de az nem egyezik meg a függvényértékkel.
  • Ugrás - Ez olyankor van, ha a függvénynek nem létezik határértéke az adott pontban, de van jobb és bal oldali véges határértéke.
  • Nem megszüntethető nem véges szakadás - Ez olyankor van, ha a függvénynek nem véges a határértéke az adott pontban.
  • Nem megszüntethető oszcilláló szakadás - Ez mindegyik közül a legszörnyűbb eset, ilyenkor a függvénynek jobb és bal oldali határértéke sincs.

DIFFERENCIÁLSZÁMÍTÁS

A DERIVÁLÁS ALKALMAZÁSAI, FÜGGVÉNYVIZSGÁLAT

SOROK

INTEGRÁLÁS, PRIMITÍV FÜGGVÉNY

HATÁROZOTT INTEGRÁLÁS

KETTŐS INTEGRÁL

MÁTRIXOK

VEKTOROK

EGY KIS GEOMETRIA

VEKTORTEREK

  • Az axiómák - Végre valami izgalom...
  • Koordináták - A valós feletti n dimenziós vektortér jele Rn ahol n a vektorok koordinátáinak számát jelöli.
  • Lineárisan független vektorok - Egy vektorrendszer elemei linárisan függetlenek, ha egyik vektor sem állítható elő a többi segítségével.
  • Lineárisan összefüggő vektorok - Egy vektorrendszer elemei linárisan összefüggők, ha van olyan vektor közöttük, amelyik előállítható a többi vektor segítségével.
  • Generátorrendszer - Vektorknak egy halmaza, amely segítségével minden egyéb vektortérbeli vektor előállítható. Lássuk hogyan.
  • Bázis - A lineárisan független generátorrendszer.
  • Alterek - W altér V-ben, ha részhalmaza és maga is vektortér a V-beli műveletekre. Nos ez remek, de nézzük meg, mit is jelet mindez.
  • Rang - Vektorrendszer rangja és mátrix rangja.
  • Gram-Schmidt ortogonalizáció - Egy remek délutáni program, amivel egy bázisból olyan bázist lehet fabrikálni, ahol a bázisvektorok egymásra merőlegesek.

LINEÁRIS EGYENLETRENDSZEREK

A DETERMINÁNS, SAJÁTÉRTÉK, SAJÁTVEKTOR

  • A determináns definíciója - A determináns úgy működik, hogy minden négyzetes mátrixból csinál egy valós számot. Hogy miért, és, hogy hogyan, az mindjárt kiderül.
  • Sarrus szabály - Egy nem túl jó módszer a determináns kiszámolására.
  • A kifejtési tétel - Egy túl jó módszer a determináns kiszámplására.
  • Szinguláris és invertálható mátrixok - Azokat a mátrixokat nevezzük szingulárisnak, amelyek determinánsa nulla. Regulárisnak pedig azokat, amelyeknek nem nulla.
  • A determináns tulajdonságai - Remek tulajdonságai vannak a determinánsoknak.
  • Sajátvektor - Egy mátrix sajátvektora egy olyan nem nullvektor, ami azt tudja, hogy megszorozva a mátrixszal az eredeti vektor skalárszorosát kapjuk. Ez igazán remek, de, hogy pontosan miért, nos ez mindjárt kiderül.
  • Sajátérték - Egy mátrix sajátértéke egy valós szám, amely azt mondja meg, hogy a sajátvektor hányszorosát kapjuk akkor, ha azt a mátrixszal szorozzuk.
  • Karakterisztikus egyenlet - A sajátértékek kiszámolásához szükséges egyenlet.
  • A diagonális alak - Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix diagonális alakját. Lássuk ez miért ilyen roppant fontos.
  • Mátrixok definitsége - Hát ez is egy érdekes ügy.
  • Kvadratikus alakok - Éjszaka nem ajánlatos összefutni velük az utcán...
  • Kvadratikus alakok definitsége - A kvadratikus alakok mátrixa segít eldönteni a definitséget.

KÉTVÁLTOZÓS FÜGGVÉNYEK

  • Mik azok a kétváltozós függvények? - Néhány elképesztően izgalmas példa kétváltozós függvényekre.
  • Lokális szélsőértékek - A kétváltozós függvények minimumai és maximumai olyanok, mint hegycsúcsok és völgyek.
  • Nyeregpont - Ez egy speciális pont a kétváltozós függvények felületén, amely bizonyos irányok szerint maximum, míg más irányok mentén minimum.
  • Parciális deriválás - A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
  • x szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol x-et tekintjük változónak.
  • y szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol y-t tekintjük változónak.
  • Másodrendű deriváltak - Az első deriváltak tovább deriválása újra parciális deriválással történik. Így négy darab másodrendű deriváltat kapunk. Két tiszta másodrendű deriváltat és két vegyes másodrendű deriváltat.
  • Young tétel - A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.
  • Stacionárius pont - Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
  • Hesse mátrix - A másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen gyeregpontja van-e.
  • Érintősík - Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ezesetben most egy sík lesz az érintő.
  • Az érintősík normálvektora - Az érintősík normálvektora a parciális derivltakból keletkező vektor, amit gradiensnek vagy másként deriváltvektornak is neveznek.
  • Gradiens - A parciális derivltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
  • Deriváltvektor - A parciális derivltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
  • Iránymenti derivált - Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.
  • Implicit deriválás tétele - Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.
Visszajelzés