- Függvények és inverz függvények
- Vektorok, koordináták, térelemek
- Determináns, sajátérték, sajátvektor
- Komplex számok
- Lineáris egyenletrendszerek, mátrixok inverze
- Mátrixok, vektorok, vektorterek
- Sorozatok
- Küszöbindex és monotonitás
- Sorok
- Függvények határértéke és folytonossága
- A függvényhatárérték precíz definíciója
- Deriválás
- Differenciálhatóság vizsgálata és az érintő egyenlete
- L’Hospital szabály, Taylor sor, Taylor polinom
- Szélsőértékfeladatok, könnyű függvényvizsgálatok
- Függvényvizsgálat, gazdasági feladatok
- Határozatlan integrálás
- Határozott integrálás
- Kétváltozós függvények
Függvények és inverz függvények
Értékkészlet
Adott az $f: A \mapsto B$ függvény. A függvény értékkészlete azoknak az elemeknek a halmaza a $B$ halmazban, amelyek hozzá vannak rendelve valamely $A$ halmazbeli elemekhez.
Az értékkészlet jele az angol range szó alapján, ami azt jelenti, hogy kiterjedés: $R_f$ vagy az akadálymentesített jelölése: É.K.
Értelmezési tartomány
Egy kifejezés értelmezési tartományán azt a legbővebb halmazt értjük, ahol értelmezve van.
Függvény esetén azokat a szerencsés $x$-eket, amelyekhez a függvény hozzárendel egy $y$ számot, a függvény értelmezési tartományának nevezzük.
A következőket érdemes megjegyezni:
\( \sqrt[ \text{páros}]{ \text{ez itt} \geq 0} \quad \sqrt[ \text{páratlan} ]{ \text{ez itt bármi}} \quad \log{ \left( \text{ez itt} > 0 \right)} \quad \text{ tört nevező} \neq 0 \)
pl.: $ f(x)=\frac{4x}{(x-3)^4} $ értelmezési tartománya $ \forall x \in R \setminus \{ -3 \} $, mert nincs gyök és nincs logaritmus, de tört van, tehát a nevező nem lehet nulla ($x \neq 3$)
inverzfüggvény
Minden függvény egy $x \mapsto y$ hozzárendelés, aminek az inverze, ha az egyáltalán létezik, az $y \mapsto x$ fordított hozzárendelés.
Inverze csak azoknak a függvényeknek van, amik két különböző $x$-hez különböző $y$-okat rendelnek, ezt úgy mondjuk, hogy kölcsönesen egyértelműek, vagy kicsit rövidebben injektívek.
Adjuk meg az \( f(x)=16-x^2 \) függvény inverzát, ha
a) \( x \in \mathbb{R} \)
b) \( x \in \mathbb{R}^+ \)
c) \( -4 \leq x \leq 0 \)
d) \( -4 \leq x \leq 4\)
Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.
\( f(x)=x^4-18x^2+17 \)
Mi az inverzfüggvénye?
a) \( f(x)=\sqrt{x-2} \)
b) \( f(x)=2^x \)
c) \( f(x)=3+\log_2{(x-5)} \)
d) \( f(x)=4+e^{2x-1} \)
e) \( f(x)=7+ \ln{ \frac{x+3}{4 }} \)
Kezdjük egy nagyon egyszerű dologgal.
Nézzük meg, hogyan működnek a függvények.
Nos itt van az x tengely, tele számokkal.
x tengely
A függvény pedig ezek közül a számok közül bizonyos számokhoz hozzárendel egy másik számot.
Mondjuk hozzárendeli a négyzetüket.
Ezt a függvényt így jelöljük, hogy
Legtöbbször ezt a harmadik jelölést fogjuk használni.
Azokat a szerencsés x-eket amikhez a függvény hozzárendel valamit, értelmezési tartománynak nevezzük és -el jelöljük.
Az x2-nél ez az egész x tengely.
De itt jön például a
ami negatív x-ekre nincs értelmezve.
Így aztán az értelmezési tartomány:
Az y tengelynek azt a részét, amit az x-ekhez hozzárendeltünk értékkészletnek nevezzük.
Az értékkészlet jele
Most pedig térjünk vissza az x2 függvényhez.
Az x2 függvény grafikonja egy parabola, a parabolának a csúcsa az origóban van.
De ha x helyére azt írjuk, hogy
nos akkor odébb megy.
A parabola csúcsa mindig ott van, ahol ez nulla.
Most éppen -nál.
Itt jön aztán mondjuk ez.
Ha a négyzeten kívül még hozzáadunk hármat,
nos az az y tengelyen tolja el 3-mal.
Ezt belső függvény transzformációnak nevezzük,
ezt pedig külsőnek.
Ha van egy ilyen, hogy
akkor a belső transzformáció miatt az x tengely mentén tolódik el,
a külső miatt pedig az y tengely mentén.
Lássuk mi történik, ha ide 2x-et írunk.
Nos ekkor az y tengely mentén van egy kis megnyúlás,
de ez nem annyira izgalmas.
Ami sokkal izgalmasabb, hogy az eltolódás is megváltozik.
És most lássuk, hogyan nézhet ki ez.
A -et már ismerjük.
Ezt kell arrébb tolnunk az x tengelyen lássuk csak…
3-mal.
Az y tengelyen pedig 2-vel.
Ha pedig van egy ilyen, hogy
nos akkor a 3x miatt kicsit megnyúlik,
aztán pedig a szokásos.
Ha a elé írunk egy mínusz jelet, akkor ezzel a függvény grafikonját az x tengelyre tükrözzük.
Ha belülre rakjuk a mínuszjelet, akkor ezáltal az y tengelyre tükrözzük.
És ha kedvünk van, tükrözhetjük a függvényt mindkét tengelyre is.
A helyzet akkor válik izgalmassá, ha ezt ötvözzük az eddigi tologatással.
Nézzük meg például, hogy vajon hogyan nézhet ki ez a függvény.
Lesz egy kis eltolódás az x tengelyen,
aztán az y tengelyen is,
és végül a mínuszjel miatt egy tükrözés.
Ha a mínuszjel kívül van, nos akkor egészen más a helyzet:
Hát ez remek. Ez a külső függvénytranszformáció meg belső függvénytranszformáció igazán nagyon izgalmas elfoglaltság. Most pedig nézzük mi jöhet még.
A teljes négyzetté kiegészítés művészete.
Az előző képsorban látott függvény-transzformációk alapján megpróbáljuk ábrázolni ezt a függvényt.
Ahhoz, hogy eldönthessük, ez a függvény milyen transzformációknak esett áldozatául, először egy nagyon vicces dolgot kell csinálnunk vele.
Ezt a dolgot teljes négyzetté kiegészítésnek nevezzük és még később is sokszor kelleni fog, így hát essünk túl rajta.
A lényeg ez a két azonosság:
Most éppen ebbe az irányba használjuk majd őket.
Addig-addig nézegetjük a függvényt, amíg belelátjuk valamelyik azonosságot.
Lássuk csak mennyi lehet vajon b.
Nos ennyi:
És ezt már tudjuk ábrázolni, ha még emlékszünk az előző képsorra.
Nézzük meg ezt is:
Most pedig itt az ideje, hogy újabb függvényekkel ismerkedjünk meg.
A következő képsorban már jönnek is az exponenciális függvények.
Ez exponenciális függvényekkel való ismerkedésünket kezdjük az alapokkal, a hatványazonosságokkal.
Hatványozni jó dolog és így kezdetben bőven elég annyit tudni, hogy
de semmi ördögi nem lesz itt.
Az első hatványazonosság azzal fog foglalkozni, hogy mi történik, ha megszorozzuk ezt mondjuk azzal, hogy 62.
Hát nézzük meg.
Nos ha ezeket összeszorozzuk, akkor
a kitevők összeadódnak.
Ez lesz az első azonosság.
HATVÁNYAZONOSSÁGOK
Most nézzük meg mi történik, ha ezeket elosztjuk egymással.
De azért van itt egy apró kellemetlenség.
Már jön is.
Nos amikor a nevező kitevője nagyobb, ilyenkor az eredmény egy tört.
Itt pedig a kitevő negatív lesz.
Most lássuk, hogyan kell hatványt hatványozni.
Nos így:
A kitevőket kell összeszoroznunk.
Itt van aztán ez, hogy
Na ez vajon mi lehet?
Nézzük meg mi történik ha alkalmazzuk rá a legújabb azonosságunkat.
Vagyis ez valami olyan, amit ha négyzetre emelünk, akkor 9-et kapunk.
Ilyen éppenséggel van, ezt hívjuk -nek.
A törtkitevő tehát gyökvonást jelent.
Az előbbi két azonosságot kicsit továbbfejlesztve kapunk egy harmadikat.
Ha van egy ilyen, hogy
nos akkor ezen ki is próbálhatjuk ezt a képletet.
Jön itt még néhány újabb képlet,
de most már lássuk a függvényeket.
Így néz ki a 2x függvény. Ez pedig a 3x.
Ha az alap egy 2 és 3 közti szám, akkor a függvény a 2x és a 3x között van.
Például egy ilyen szám a
2,71828182845904523536028747135266249775724709369995…
Ez a szám mágikus jelentőséggel bír a matematikában és az egyszerűség kedvéért elnevezték e-nek.
Ez a függvény tehát az ex.
Az összes 1-nél nagyobb alapú exponenciális függvény valahogy így néz ki.
Ha az alap 1-nél kisebb, nos az egy másik állatfajta.
Színre lép a logaritmus
És most egy új szereplő lép színre, a logaritmus.
Nos ez a logaritmus egy nagyon remek dolog, de kis magyarázatot igényel.
Mindössze arról van szó, hogy azt mondja meg, a-t hányadik hatványra kell emelni ahhoz, hogy x-et kapjunk.
Itt van például ez:
Ez azt jelenti, hogy 2-t hányadik hatványra kell emelnünk, hogy 8-at kapjunk.
Nos 23=8, tehát a válasz…
Vagy nézzük meg ezt:
Nos lássuk csak
Itt jön aztán egy nehezebb ügy:
A kérdés az, hogyan lesz a 8-ból 2. Az elosztjuk 4-gyel ugye nem jó válasz, mert valami hatványozás kell ide.
A jó válasz:
Próbáljuk meg kitalálni, mennyi lehet ez:
A kérdés, 8 a hányadikon a 16.
Nos ami a 8-ban és a 16-ban közös, az a 2, mert 23=8 és 24=16.
Így aztán úgy jutunk el a 8-ból a 16-hoz, hogy előbb a 8-ból csinálunk 2-t,
utána pedig a 2-ből 16-ot.
Mindezek után már nem jelenthet gondot ez sem:
Sőt ez sem:
Most pedig lássuk a logaritmusos azonosságokat.
LOGARITMUS AZONOSSÁGOK
A logaritmus egyik legnagyobb haszna az, hogy képesek vagyunk megoldani az ilyen egyenleteket, mint amilyen ez
Mindkét oldalnak vesszük a logaritmusát.
És voila.
Általánosítva, ha van egy ilyen, hogy
akkor ebből így kapjuk meg x-et.
A megfordítását is jegyezzük meg, ha
akkor így kapjuk meg x-et.
Exponenciális egyenlet megoldása
Logaritmikus egyenlet megoldása
Oldjuk meg például ezeket:
Most pedig lássuk a függvényeket.
Nos a logaritmus csak pozitív x-ekre van értelmezve.
Ha az alap 1-nél nagyobb, akkor a függvény növekszik.
Ha 1-nél kisebb, akkor csökken.
Beszéljünk egy kicsit a trigonometrikus függvényekről.
Nos itt van egy egységsugarú kör.
Amiben az irányszögű egységvektor első koordinátája
a második koordinátája .
A és a periodikus függvények.
Ez azt jelenti, hogy bizonyos időközönként megismétlik önmagukat.
Ezt az időközt periódusnak nevezzük és az ő esetükben a periódus .
Ha van egy ilyen egyenlet, hogy
nos akkor ennek a periodikusság miatt végtelen sok megoldása van.
Ráadásul van egy kék megoldás,
és van egy zöld.
ezt adja a számológép,
ez meg a periódus
Na ezt már nem adja ki a számológép, hanem egy kis cselhez kell folyamodnunk.
A szinusz úgy működik, hogy mindig van egy kék megoldás, amit a számológép ad,
és van egy zöld megoldás, amit úgy kapunk, hogy
az összegüknek mindig -nek kell lennie.
Ezt nem árt megjegyezni.
Lássuk mi a helyzet a koszinusszal.
Itt is lesz egy kék és egy zöld megoldás,
ráadásul mindkettőből végtelen sok.
A helyzet annyival egyszerűbb, mint a szinusz esetében, hogy itt a kék és zöld megoldás mindig egymás mínuszegyszerese.
A kéket adja a számológép,
és ha elé biggyesztünk egy mínuszjelet,
nos akkor meg is van a zöld.
A koszinusz tehát sokkal jobb, mint a szinusz.
Most pedig újabb állatfajták következnek.
Lássuk hogyan is néznek ezek ki.
Nos nem túl szépen.
Leginkább talán tapétamintának használhatnánk őket.
A vizuális élvezetek után most a trigonometriai képletek özönvízszerű áradata következik.
Csak a legfontosabb egymillió darab képletet nézzük meg.
A LEGFONTOSABB TRIGONOMETRIAI ÖSSZEFÜGGÉSEK
Itt az egység sugarú körben van egy derékszögű háromszög,
amire felírjuk a Pithagorasz-tételt.
Nos talán ez a legfontosabb trigonometriai összefüggésünk.
Van ennek két mutáns változata is.
Most pedig újabb bűvészkedések következnek az egységsugarú körben.
És itt jön még néhány.
Minden függvény egy hozzárendelés, aminek az inverze, ha az egyáltalán létezik, az fordított hozzárendelés.
Az inverz kiszámolásának menete a következő:
Legyen mondjuk
Előszöris írjuk a függvényt y=izé alakban:
Itt x-hez rendelünk y-t.
Az inverz a fordított hozzárendelés, ahol y-hoz rendelünk x-et, ezért a cél mindig az, hogy az Y=izét x=bigyó alakra rendezzük.
Végül x-et és y-t kicseréljük (van aki nem) és így kapjuk az inverzt:
Az inverz jele:
Van azonban egy kis gond. Nem minden függvénynek van inverzze, ugyanis nem minden függvénynél fordítható meg a hozzárendelés.
Például az függvény esetében és amit megfordítani nem tudunk: .
A gond azzal van, hogy ez a függvény két különböző számhoz (a 2-höz és a -2-höz is) ugyanazt a számot rendeli és emiatt a hozzárendelés nem fordítható meg.
De ha a negatív számokat kiiktatjuk,
nos akkor már minden rendben.
Inverze tehát csak azon függvényeknek van, amik két különböző x-hez
különböző y-okat rendelnek.
Ezt úgy mondjuk, hogy kölcsönösen egyértelműek, vagy kicsit rövidebben injektívek.
Az függvény injektív, ha akkor .
Minden szigorúan monoton függvény injektív és így invertálható.
És van itt még egy dolog.
Legyen a függvényünk az és értelmezési tartománya .
Nos, ekkor az értékkészlete .
Az inverz függvény a fordított hozzárendelés, tehát ilyenkor ezek fölcserélődnek.
Ha invertálható, akkor az értelmezési tartománya megegyezik az inverzének értékkészletével, és értékkészlete az inverz értelmezési tartományával.
Nézzünk néhány példát.
Adjuk meg az függvény inverzét, ha
Nincs inverz, mert a függvény nem injektív.
Például 4-hez és -4-hez is ugyanazt rendeli, éppenséggel 0-t.
Ebben az esetben viszont egészen más a helyzet, itt ugyanis x csak pozitív lehet. Márpedig nincs két pozitív szám, aminek a négyzete ugyanaz, így a függvény injektív.
Lássuk az inverzt
Ebben az esetben is van inverz, mert a függvény injektív.
Lássuk az inverzt!
Ebben az esetben a függvénynek nincs inverze, mert ezúttal sem injektív, például 4-hez és -4-hez is megint ugyanazt rendeli, 0-t.
Sajna ilyenkor sincs inverz, mert a függvény nem injektív.
Lássunk még egyet.
Van itt ez a függvény, keressük az inverzét.
és
Végül nézzük meg ezt is.
Beszéljünk egy kicsit az inverz geometriai jelentéséről.
Van itt egy függvény
és nézzük meg, mi történik a függvény grafikonjával, amikor invertáljuk.
Nos ez.
Tükrözzük a függvénygrafikonját az y=x egyenletű egyenesre.
A rajzon az is remekül látszik, hogy a gyökös függvények inverze sosem a teljes paraola, mindig csak a fele.
És ez fordítva is igaz: a teljes parabolát sosem tudjuk invertálni, mindig csak a felét.
Itt jön aztán egy másik remek függvény az
Nos ennek a függvénynek az inverze az
Az exponenciális függvények inverzei a logaritmusfüggvények.
És ez kölcsönös, tehát a logaritmusfüggvények inverzei az exponenciális függvények.
Nézzük meg például ennek az inverzét:
A kitevőből úgy tudjuk x-et előcsalogatni, hogy vesszük mindkét oldal logaritmusát.
Vagy itt van például egy másik:
Az és az szintén egymás inverzei.
Vigyázni kell ezzel az inverz függvény számolással, nagy mennyiségben ugyanis ártalmas lehet.
De talán egy még belefér…
Minden függvény egy hozzárendelés, aminek az inverze, ha az egyáltalán létezik, az fordított hozzárendelés.
Az inverz kiszámolásának menete a következő:
Legyen mondjuk
Előszöris írjuk a függvényt y=izé alakban:
Itt x-hez rendelünk y-t.
Az inverz a fordított hozzárendelés, ahol y-hoz rendelünk x-et, ezért a cél mindig az, hogy az Y=izét x=bigyó alakra rendezzük.
Végül x-et és y-t kicseréljük (van aki nem) és így kapjuk az inverzt:
Az inverz jele:
Van azonban egy kis gond. Nem minden függvénynek van inverzze, ugyanis nem minden függvénynél fordítható meg a hozzárendelés.
Például az függvény esetében és amit megfordítani nem tudunk: .
A gond azzal van, hogy ez a függvény két különböző számhoz (a 2-höz és a -2-höz is) ugyanazt a számot rendeli és emiatt a hozzárendelés nem fordítható meg.
De ha a negatív számokat kiiktatjuk,
nos akkor már minden rendben.
Inverze tehát csak azon függvényeknek van, amik két különböző x-hez
különböző y-okat rendelnek.
Ezt úgy mondjuk, hogy kölcsönösen egyértelműek, vagy kicsit rövidebben injektívek.
Az függvény injektív, ha akkor .
Minden szigorúan monoton függvény injektív és így invertálható.
És van itt még egy dolog.
Legyen a függvényünk az és értelmezési tartománya .
Nos, ekkor az értékkészlete .
Az inverz függvény a fordított hozzárendelés, tehát ilyenkor ezek fölcserélődnek.
Ha invertálható, akkor az értelmezési tartománya megegyezik az inverzének értékkészletével, és értékkészlete az inverz értelmezési tartományával.
Nézzünk néhány példát.
Adjuk meg az függvény inverzét, ha
Nincs inverz, mert a függvény nem injektív.
Például 4-hez és -4-hez is ugyanazt rendeli, éppenséggel 0-t.
Ebben az esetben viszont egészen más a helyzet, itt ugyanis x csak pozitív lehet. Márpedig nincs két pozitív szám, aminek a négyzete ugyanaz, így a függvény injektív.
Lássuk az inverzt
Ebben az esetben is van inverz, mert a függvény injektív.
Lássuk az inverzt!
Ebben az esetben a függvénynek nincs inverze, mert ezúttal sem injektív, például 4-hez és -4-hez is megint ugyanazt rendeli, 0-t.
Sajna ilyenkor sincs inverz, mert a függvény nem injektív.
Lássunk még egyet.
Van itt ez a függvény, keressük az inverzét.
és
Végül nézzük meg ezt is.
Beszéljünk egy kicsit az inverz geometriai jelentéséről.
Van itt egy függvény
és nézzük meg, mi történik a függvény grafikonjával, amikor invertáljuk.
Nos ez.
Tükrözzük a függvénygrafikonját az y=x egyenletű egyenesre.
A rajzon az is remekül látszik, hogy a gyökös függvények inverze sosem a teljes paraola, mindig csak a fele.
És ez fordítva is igaz: a teljes parabolát sosem tudjuk invertálni, mindig csak a felét.
Itt jön aztán egy másik remek függvény az
Nos ennek a függvénynek az inverze az
Az exponenciális függvények inverzei a logaritmusfüggvények.
És ez kölcsönös, tehát a logaritmusfüggvények inverzei az exponenciális függvények.
Nézzük meg például ennek az inverzét:
A kitevőből úgy tudjuk x-et előcsalogatni, hogy vesszük mindkét oldal logaritmusát.
Vagy itt van például egy másik:
Az és az szintén egymás inverzei.
Vigyázni kell ezzel az inverz függvény számolással, nagy mennyiségben ugyanis ártalmas lehet.
De talán egy még belefér…
Itt egy csodálatos kör, aminek a középpontja az origó és a sugara 1.
Ezt a kört egységkörnek nevezzük.
Az egységkör pontjainak x és y koordinátái -1 és 1 közé eső számok.
Ezekkel a koordinátákkal foglalkozni meglehetősen unalmas időtöltésnek tűnik…
Mivel azonban a matematikában mágikus jelentőségük van, egy kis időt mégis szakítanunk kell rájuk.
Itt van mondjuk ez a P pont.
Az egységkörben az x tengely irányát kezdő iránynak nevezzük,
a P pontba mutató irányt pedig záró iránynak.
A két irány által bezárt szög lehet pozitív,
és lehet negatív.
A szöget pedig mérhetjük fokban és mérhetjük radiánban.
Nos ez a radián egész érdekesen működik:
a szögek mérésére az egységkör ívhosszát használja.
Van itt ez a szög, ami fokban számítva
És most lássuk mi a helyzet radiánban.
A kör kerületének a képlete .
Az egységkör sugara 1, tehát a kerülete .
A 45fok a teljes körnek az 1/8-a,
így a hozzá tartozó körív is a teljes kerület 1/8-a vagyis
Nos így kapjuk, hogy
Most pedig lássuk az egységkör pontjainak koordinátáit.
Kezdjük ezzel, amikor
Ezt jegyezzük föl.
A jelek szerint ez egy egyenlő szárú háromszög, tehát x=y.
Jön a Pitagorasz-tétel:
Most nézzük meg mi van akkor, ha
Ha egy háromszögben van két -os szög, akkor a háromszög egyenlő oldalú.
És most jön a Pitagorasz-tétel.
Az esetét elintézhetjük egy tükrözés segítségével.
Ha az -os esetet tükrözzük, akkor pedig eljutunk -hoz.
-nál túl sok számolásra nincs szükség.
Ahogyan –nál és -nál sem.
És most elérkezett az idő, hogy nevet adjunk ezeknek a koordinátáknak.
Az x koordinátát hívjuk Bobnak,
az y koordinátát pedig…
Nos mégsem olyan jó név a Bob. Egy K-val kezdődő név jobban hangzana.
Legyen mondjuk koszinusz.
A másik pedig szinusz.
Rögtön folytatjuk.
A P pont x koordinátáját -nak nevezzük.
Az y koordinátáját -nak.
Kezdjük néhány egyszerűbb egyenlettel.
Nagyon tipikusak azok a másodfokú egyenletek, amelyek trigonometrikus egyenletnek álcázzák magukat.
Íme itt egy ilyen:
Itt jön a megoldóképlet:
A koszinusz mindig -1 és 1 közt van,
így aztán az első eset nem túl valószínű.
Lássuk mi történik a másik esetben.
Szintén tipikus csel, hogy az egyenletben először alkalmazni kell ezt az azonosságot és kapunk másodfokú egyenletet.
Lássunk egy ilyet is.
Az egyenletben első fokon cosx szerepel,
ezért akkor járunk jól, ha mindenhol cosx lesz.
Most pedig lássunk egy izgalmasabb egyenletet.
A szinusz úgy működik, hogy a kék megoldást a számológép adja,
a zöld megoldás pedig úgy jön ki, a két szög összege mindig egy egyenest kell, hogy adjon.
A koszinusz sokkal kellemesebb, itt a kék megoldást adja a számológép,
a zöld pedig mindig ennek a mínuszegyszerese.
A tangens úgy működik, hogy a kék megoldást a számológép adja,
a periódus pedig nem hanem .
A koszinusz a szokásos.
Itt egy csodálatos kör, aminek a középpontja az origó és a sugara 1.
Ezt a kört egységkörnek nevezzük.
Az egységkör pontjainak x és y koordinátái -1 és 1 közé eső számok.
Ezekkel a koordinátákkal foglalkozni meglehetősen unalmas időtöltésnek tűnik…
Mivel azonban a matematikában mágikus jelentőségük van, egy kis időt mégis szakítanunk kell rájuk.
Itt van mondjuk ez a P pont.
Az egységkörben az x tengely irányát kezdő iránynak nevezzük,
a P pontba mutató irányt pedig záró iránynak.
A két irány által bezárt szög lehet pozitív,
és lehet negatív.
A szöget pedig mérhetjük fokban és mérhetjük radiánban.
Nos ez a radián egész érdekesen működik:
a szögek mérésére az egységkör ívhosszát használja.
Van itt ez a szög, ami fokban számítva
És most lássuk mi a helyzet radiánban.
A kör kerületének a képlete .
Az egységkör sugara 1, tehát a kerülete .
A 45fok a teljes körnek az 1/8-a,
így a hozzá tartozó körív is a teljes kerület 1/8-a vagyis
Nos így kapjuk, hogy
Most pedig lássuk az egységkör pontjainak koordinátáit.
Kezdjük ezzel, amikor
Ezt jegyezzük föl.
A jelek szerint ez egy egyenlő szárú háromszög, tehát x=y.
Jön a Pitagorasz-tétel:
Most nézzük meg mi van akkor, ha
Ha egy háromszögben van két -os szög, akkor a háromszög egyenlő oldalú.
És most jön a Pitagorasz-tétel.
Az esetét elintézhetjük egy tükrözés segítségével.
Ha az -os esetet tükrözzük, akkor pedig eljutunk -hoz.
-nál túl sok számolásra nincs szükség.
Ahogyan –nál és -nál sem.
És most elérkezett az idő, hogy nevet adjunk ezeknek a koordinátáknak.
Az x koordinátát hívjuk Bobnak,
az y koordinátát pedig…
Nos mégsem olyan jó név a Bob. Egy K-val kezdődő név jobban hangzana.
Legyen mondjuk koszinusz.
A másik pedig szinusz.
Rögtön folytatjuk.
A P pont x koordinátáját -nak nevezzük.
Az y koordinátáját -nak.
Kezdjük néhány egyszerűbb egyenlettel.
Nagyon tipikusak azok a másodfokú egyenletek, amelyek trigonometrikus egyenletnek álcázzák magukat.
Íme itt egy ilyen:
Itt jön a megoldóképlet:
A koszinusz mindig -1 és 1 közt van,
így aztán az első eset nem túl valószínű.
Lássuk mi történik a másik esetben.
Szintén tipikus csel, hogy az egyenletben először alkalmazni kell ezt az azonosságot és kapunk másodfokú egyenletet.
Lássunk egy ilyet is.
Az egyenletben első fokon cosx szerepel,
ezért akkor járunk jól, ha mindenhol cosx lesz.
Most pedig lássunk egy izgalmasabb egyenletet.
A szinusz úgy működik, hogy a kék megoldást a számológép adja,
a zöld megoldás pedig úgy jön ki, a két szög összege mindig egy egyenest kell, hogy adjon.
A koszinusz sokkal kellemesebb, itt a kék megoldást adja a számológép,
a zöld pedig mindig ennek a mínuszegyszerese.
A tangens úgy működik, hogy a kék megoldást a számológép adja,
a periódus pedig nem hanem .
A koszinusz a szokásos.
Van itt ez a két halmaz…
Hogyha az egyik halmaz elemeihez hozzárendeljük a másik halmaz elemeit…
Akkor kiderül, hogy milyen idő lesz a héten.
Az is megeshet, hogy több nap is ugyanolyan lesz az idő…
Ezzel nincsen semmi baj.
De ha szombathoz például két különböző elemet is rendelünk…
Na, akkor most esernyőt vigyünk vagy fürdőruhát?
Hát igen, ez így nem túl egyértelmű…
Egy hozzárendelést egyértelműnek nevezünk, ha minden elemhez pontosan egy másik elemet rendel hozzá.
Teljesen mindegy, hogy melyiket…
egyedül az a fontos, hogy csak egyet.
Ez a hozzárendelés most egyértelmű.
Az egyértelmű hozzárendeléseket úgy hívjuk, hogy függvény.
Az ilyen egyértelmű hozzárendeléseknek az a neve, hogy függvény.
Adott az és nem üres halmaz.
Ha az A halmaz bizonyos elemeihez egyértelműen hozzárendeljük a B halmaz bizonyos elemeit, akkor ezt a hozzárendelést függvénynek nevezzük.
Simán előfordulhat, hogy az A halmaznak csak néhány eleméhez rendeljük hozzá…
a B halmaznak néhány elemét.
És az sem okoz problémát, ha több elemhez is ugyanazt rendeljük.
Egyedül az lenne baj, ha egy elemhez rendelnénk hozzá több elemet.
ÉRTELMEZÉSI TARTOMÁNY
ÉRTÉKKÉSZLET
Az értelmezési tartomány azoknak az elemeknek a halmaza az A halmazban… amikhez a függvény hozzárendel B halmazbeli elemeket.
Az értékkészlet pedig azoknak az elemeknek a halmaza a B halmazban…
amelyek hozzá vannak rendelve valamely A halmazbeli elemekhez.
Az értelmezési tartományt a domain szó alapján, ami egyébként azt jelenti, hogy tartomány így jelöljük:
De a gyengébb idegzetűek kedvéért szokás úgy is jelölni, hogy É.T.
Az értékkészlet jele pedig a range szó alapján, ami azt jelenti, hogy kiterjedés:
Ennek is van egy akadálymentesített jelölése, ami így szól, hogy É.K.
Egy hozzárendelést kölcsönösen egyértelműnek nevezünk, hogyha nem csak az egyik irányba egyértelmű…
hanem a másik irányba is.
Esetünkben ez most nem mondható el.
Az eső ugyanis pénteken és szombaton is esik.
Így aztán a visszafelé irányban az esőhöz a pénteket és a szombatot is hozzárendeljük.
Talán, ha pénteken sütne egy kicsit a nap…
az minden problémát megoldana.
Ez most egy kölcsönösen egyértelmű hozzárendelés.
És most lássuk, mire is használhatnánk ezeket a függvényeket, jóra vagy rosszra…
Az függvény kölcsönösen egyértelmű, ha akkor .
Vagyis különbözö x-ekhez mindig különböző y-okat rendel.
A kölcsönösen egyértelmű függvények az injektív függvények.
Itt jön aztán egy másik izgalmas tulajdonság is.
Egy függvény szürjektív, hogyha az egész B halmaz előáll képként, vagyis B minden eleme hozzá van rendelva valamelyik A-beli elemhez.
Hát ez most éppen nem mondható el, a napsütés ugyanis kimarad…
Hogyha mondjuk csütörtökön sütne egy kicsit a nap…
Na, az segítene a dolgon.
Ez a függvény így már szürjektív.
És így is szürjektív.
Hogyha ráadásul még injektív is lenne…
Ehhez egy kicsit változatosabb időjárásra lesz szükség…
Akkor ez egy injektív és szürjektív függvény, amit úgy hívunk, hogy bijektív.