- Trigonometria
- Trigonometrikus egyenletek és egyenlőtlenségek
- Szinusztétel és koszinusztétel
- Kombinatorika
- Gráfok
- Gyökös azonosságok és gyökös egyenletek
- Exponenciális egyenletek és egyenlőtlenségek
- Logaritmus, logaritmikus egyenletek, egyenlőtlenségek
- Exponenciális, logaritmusos és trigonometrikus egyenletrendszerek (emelt)
- Számelmélet, számrendszerek
- Statisztika
- Valószínűségszámítás
- A geometriai valószínűség
- A várható érték
- Vektorok
- Koordinátageometria
- A parabola (emelt szint)
- Százalékszámítás és pénzügyi számítások
- Függvények ábrázolása
- Feladatok függvényekkel
- Bizonyítási módszerek, matematikai logika
- Számtani és mértani sorozatok
- Sorozatok határértéke (emelt szint)
- Sorozatok monotonitása és korlátossága (emelt szint)
- Függvények határértéke és folytonossága (emelt szint)
- Deriválás (emelt szint)
- Függvényvizsgálat, szélsőérték feladatok (emelt szint)
- Függvények érintője (emelt szint)
- Az integrálás (emelt szint)
Függvények érintője (emelt szint)
Az érintő egyenlete
A derivált geometriai jelentése a függvény grafikonjához húzott érintő meredeksége.
Az érintő egyenlete:
\( f(x) = f'(x_0) (x-x_0) + f(x_0) \)
Oldjuk meg az alábbi feladatokat:
a) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=2x^3+1 \) függvényt az \( y_0=55 \) pontban érinti.
b) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=x^2-x+4 \) függvényt egy olyan pontban érinti, aminek \( x \) koordinátája negatív, \( y \) koordinátája 24.
c) Keressük annak az érintőnek az egyenletét, amely érinti az \( f(x)=x^4+5x+12 \) függvényt és párhuzamos az \( y=-27x+1 \) egyenessel.
d) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=2e^{x-4}+5 \) függvényt az \( y_0=7 \) pontban érinti.
Oldjuk meg az alábbi feladatokat:
a) Van itt ez a függvény: \( f(x)=\sqrt[3]{\ln{x}+x^2} \), és keressük az érintő egyenletét az \( x_0=1 \) pontban.
b) Van itt ez a függvény: \( f(x)=\sin{(\ln{x})}+x \), és keressük az érintő egyenletét az \( x_0=1 \) pontban.
c) Van itt ez a függvény: \( f(x)=\ln{(\cos{x})}+e^{4x} \), és keressük az érintő egyenletét az \( x_0=0 \) pontban.
d) Van itt ez a függvény: \( f(x)=\arctan{x}+e^x \), és keressük az érintő egyenletét az \( x_0=0 \) pontban.
e) Van itt ez a függvény: \( f(x)=\arctan{( \ln{x} )} \), és keressük az érintő egyenletét az \( x_0=1 \) pontban.