Matek 2
- Kettős integrál (csak gazdinfon)
- Diff.egyenletek (csak gazdinfon)
- Valszám alapok, kombinatorika
- Teljes valószínűség tétele, Bayes tétel
- Eloszlás, eloszlásfüggvény, sűrűségfüggvény
- Idióta feladatok, amik várhatók az első ZH-ban
- Várható érték és szórás
- Markov és Csebisev egyenlőtlenségek
- Nevezetes diszkrét és folytonos eloszlások
- Kétváltozós eloszlások
- Nem árt, ha tudunk integrálni
Markov és Csebisev egyenlőtlenségek
1. Ha egy újságárus óránként 64 darab újságot szokott eladni, mekkora a valószínűsége, hogy az egyik órában
a) legalább 250-et ad el?
b) 200-nál kevesebbet ad el?
Megnézem, hogyan kell megoldani
2.
a) Egy újságárus óránként 64 darab újságot szokott eladni, a szórás pedig 8 darab. Adjunk becslét annak valószínűségére, hogy az újságos által eladott lapok száma 50 darab és 78 darab közé esik.
b) Egy üzemben 150 mm hosszú csavarokat gyártanak 2 mm szórással. Egy csavar selejtes, ha 146 mm-nél rövidebb vagy 154 mm-nél hosszabb. Adjunk becslést a selejtarányra.
c) Egy bankba óránként általában 120 ügyfél érkezik, a szórás 10. Adjunk becslést annak valószínűségére, hogy egy adott órában 100 és 150 közé esik az ügyfelek száma.
d) Egy sí üdülőhelyen a téli szezonban hetente átlag 300 cm hó esik, a szórás 60 cm. Ha 50 cm-nél kevesebb hó esik, akkor a túl kevés hó miatt le kell zárni egy bizonyos pályát. Ugyanezt a pályát 480 cm feletti hóesésnél lavinaveszély miatt kell lezárni. Adjunk becslést a pálya lezárásának valószínűségére.
Megnézem, hogyan kell megoldani
3.
a) Hányszor kel dobnunk a kockával ahhoz, hogy a hatos dobás valószínűségét a relatív gyakoriság 0,1-nél jobban megközelítse az esetek 95%-ában?
b) Hányszor kell feldobnunk egy érmét ahhoz, hogy a fej dobások valószínűségét a relatív gyakoriság 0,05-nél jobban megközelítse legalább 0,9 valószínűséggel?