Matek 3 SZE
A kurzus 9 szekcióból áll: Mátrixok inverze, Mátrixok LU-felbontása és egyéb mátrixfelbontások, Interpolációs polinomok, Valószínűségszámítás alapok, Visszatevéses és visszatevés nélküli mintavétel, Eloszlásfüggvény, sűrűségfüggvény, Exponenciális eloszlás és normális eloszlás, Poisson eloszlás, binomiális eloszlás, Hipotézisvizsgálat, próbafüggvények
Mátrixok inverze
- -
Egy egyenletrendszer együtthatómátrixa az x-ek együtthatóiból álló mátrix.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Az egyenletrendszer megoldásának egy szuper, de koránt sem a legszuperebb módja.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Ha egy egyenletrendszernek több az ismeretlene, mint ahány egyenlete van, akkor az egyenletrendszernek nincs egyértelmű megoldása.
- -
Ha egy egyenletrendszerben két olyan egyenlet szerepel, ahol az ismeretlenek együtthatói megegyeznek, de más az eredményük, akkor az ellentmondó egyenletrendszer, aminek nincs megoldása.
- -
A szabadságfok a szabadváltozók száma.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
Mátrixok LU-felbontása és egyéb mátrixfelbontások
- -
Egy mátrix LU felbontása azt jelenti, hogy a mátrixot felbontjuk egy alsó és egy felső háromszögmátrix szorzatára.
- -
Egy nxn-es mátrixnak akkor létezik LU-felbontása, ha az első n-1 főminora nem nulla.
- -
Hogyha egy olyan mátrix LU felbontására van szükségünk, amelynek valamelyik (nem utolsó) főminora 0, akkor megtehetjük azt, hogy egy premutációs mátrix segítségével felcseréljük a sorait.
- -
Ez tulajdonképpen egy olyan LU-felbontás, ahol az U mátrix az L-nek a transzponáltja.
- -
Az LU-felbontás módszere nem négyzetes mátrixokra ugyanolyan, mint eddig, a Gauss elimináció segítségével történik.
- -
A QR-felbontás azt jelenti, hogy egy mátrixot egy ortogonális és egy felsőháromszögmátrix szorzatára bontjuk.
Interpolációs polinomok
- -
Az interpoláció egy közelítő módszer, amely a függvény ismert értékei alapján ad közelítést a nem ismert értékeire.
- -
A Lagrange-féle interpolációs polinom megadja azt a polinomot, amely $x_1$-ben $y_1$-et, $x_2$-ben $y_2$-t és így tovább $x_n$-ben $y_n$ értéket vesz föl.
- -
A Newton interpoláció első lépése, hogy elkészítjűk az úgynevezett Newton-együtthatókat. Ezt követően ezek segítségével állítjuk elő a polinomot.
- -
A Hermite interpoláció abban különbözőik a Lagrange és Newton féle interpolációktól, hogy az $x_1, x_2, \dots , x_n$ helyeken nem csak az eredeti polinom-függvény értékeit, hanem a deriváltjait is nézzük.
- -
Az interpoláció egy közelítő módszer, amely a függvény ismert értékei alapján ad közelítést a nem ismert értékeire. Ennek hibájának a megbecsléséhez van egy remek képlet.
Valószínűségszámítás alapok
- -
Eseményeknek nevezzük a valószínűségi kísérlet során bekövetkező lehetséges kimeneteleket.
- -
A valószínűség kiszámításának klasszikus modellje az, hogy megszámoljuk hány elemi eseményből áll a vizsgált esemény és ezt elosztjuk az összes elemi esemény számával.
- -
Ha kör alakban helyezünk el n különböző elemet és azok sorrendjét vizsgáljuk, akkor ciklikus permutációról beszélünk.
Visszatevéses és visszatevés nélküli mintavétel
- -
Ha a szövegben valószínűségek vannak megadva, akkor a binomiális eloszlást szoktuk használni.
- -
A hipergeometriai eloszlás a visszatevés nélküli mintavételhez kapcsolódó eloszlás.
- -
Ha húzásokat vizsgálunk úgy, hogy a kihúzott elemeket nem tesszük vissza, akkor ez egy visszatevés nélküli mintavétel.
- -
A visszatevées mintavételhez kapcsolódó eloszlás a binomiális eloszlás.
Eloszlásfüggvény, sűrűségfüggvény
- -
Diszkrétnek nevezzük azokat a valószínűségi változókat, amik megszámlálhatóan sok értéket vesznek fel.
- -
Az X valószínűségi változó eloszlásfüggvénye F(x). F(x)=P(x<X) Vagyis minden x számhoz hozzárendeli annak a valószínűségét, hogy X<x. Nos ez elég izgi..
- -
Folytonosnak nevezzük azokat a valószínűségi változókat, amik folytonos mennyiségeket mérnek, ilyen például az idő, a távolság.
- -
A sűrűségfüggvény a görbe alatti területekkel írja le egy esemény valószínűségét.
- -
Az eloszlásfüggvény határértéke minusz végtelenben 0, plusz végtelenben 1, monoton nő és balról folytonos.
- -
Három nagyon fontos összefüggés eloszlásfüggvény és sűrűségfüggvény között.
- -
A sűrűségfüggvény integrálja minusz végtelentől plusz végtelenig 1, és nem negatív.
- -
Az $X$ valószínűségi változó $F(x)$ eloszlásfüggvényéből úgy kapjuk meg az $f(x)$ sűrűségfüggvényét, hogy az $F(x)$ eloszlásfüggvényt deriváljuk. Fordítva pedig integrálni kell.
Exponenciális eloszlás és normális eloszlás
- -
- -
Mennyiségek eloszlása.
Poisson eloszlás, binomiális eloszlás
- -
A binomiális eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a valószínűsége p és egymástól függetlenül elvégzünk n darab kísérletet, ahol a kísérletek mindegyikében az esemény vagy bekövetkezik vagy nem. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
- -
Az eltelt idők és a távolságok eloszlása.
- -
A hipergeometriai eloszlás egy diszkrét eloszlás, ahol N darab elem közül kiválasztunk n darab elemet visszatevés nélkül. Az összes elem között K darab selejtes található. Az eloszlás annak valószínűségét írja le, hogy a kiválasztott elemek között éppen k darab selejtes van.
- -
A Poisson eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a várható előfordulása lambda darab. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
Hipotézisvizsgálat, próbafüggvények
- -
Az elfogadási tartomány az a tartomány, ahová ha a próba értéke kerül, akkor a nullhipotézist elfogadjuk.
- -
A kritikus tartomány az a tartomány, ahová ha a próba értéke kerül, akkor a nullhipotézist elvetjük.
- -
A szignifikanciaszint a hibás döntés valószínűsége.
- -
A hipotézis megfogalmazása. A próbafüggvény kiválasztása. Szignifikanciaszint és kritikus tartomány. Mintavétel és döntés.
- -
A sokaság normális eloszlású, szórása $\sigma$, $H_0$ a sokaság átlagára vonatkozik, a minta elemszáma $n$.
- -
A sokaság normális eloszlású, szórása nem ismert, $H_0$ a sokaság átlagára vonatkozik, a minta elemszáma $n$
- -
A sokaság tetszőleges eloszlású, szórása nem ismert, $H_0$ a sokaság átlagára vonatkozik, a minta $n$ elemű, elemszáma nagy.
- -
A sokaság tetszőleges eloszlású, $H_0$ a sokasági arányra vonatkozik, a minta $n$ elemű, elemszáma nagy
- -
A sokaság normális eloszlású, $H_0$ a sokasági szórásra vonatkozik, a minta $n$ elemű.
- -
A sokaság eloszlására irányuló vizsgálat.
- -
A sokaságon belül két ismérv függetlenségére irányuló vizsgálat. $H_0$: a két ismérv független, az ellenhipotézis pedig, $H_1$: a két ismérv közti kapcsolat sztochasztikus vagy függvényszerű.
- -
Két sokaságban valamely változó eloszlásának egyezőségére irányuló vizsgálat. $H_0$: a két sokaságban az eloszlás egyező, az ellenhipotézis pedig, $H_1$: a két eloszlás nem egyező.
- -
Mindkét sokaság normális eloszlású, szórásaik $\sigma_X$ és $\sigma_Y$.
- -
A két sokaság normális eloszlású és szórásaik egyformák.
- -
A két sokaság eloszlása és szórása nem ismert, mindkettő szórása véges, és mindkét minta elemszáma elég nagy.
- -
Két sokaság szórásának összehasonlítására irányuló próba, ha mindkét sokaság normális eloszlású. A nullhipotézis $H_0$: $\sigma_1^2 = \sigma_2^2$
- -
Több sokaság várható értékének összehasonlítására vonatkozó próba, ha mindegyik sokaság normális eloszlású és azonos szórású.
- -
A Bartlett-próba több sokaság szórásának összehasonlítására vonatkozó próba, ha mindegyik sokaság normális eloszlású.