Matek 3 SZE
A kurzus 10 szekcióból áll: Mátrixok inverze, Mátrixok LU-felbontása és egyéb mátrixfelbontások, Interpolációs polinomok, Valószínűségszámítás alapok, Visszatevéses és visszatevés nélküli mintavétel, Eloszlásfüggvény, sűrűségfüggvény, Várható érték és szórás, Exponenciális eloszlás és normális eloszlás, Poisson eloszlás, binomiális eloszlás, Hipotézisvizsgálat, próbafüggvények
Mátrixok inverze
- -
Egy egyenletrendszer együtthatómátrixa az x-ek együtthatóiból álló mátrix.
- -
Az egyenletrendszer megoldásának egy szuper, de koránt sem a legszuperebb módja.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Ha egy egyenletrendszernek több az ismeretlene, mint ahány egyenlete van, akkor az egyenletrendszernek nincs egyértelmű megoldása.
- -
Ha egy egyenletrendszerben két olyan egyenlet szerepel, ahol az ismeretlenek együtthatói megegyeznek, de más az eredményük, akkor az ellentmondó egyenletrendszer, aminek nincs megoldása.
- -
A szabadságfok a szabadváltozók száma.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
Mátrixok LU-felbontása és egyéb mátrixfelbontások
- -
Egy mátrix LU felbontása azt jelenti, hogy a mátrixot felbontjuk egy alsó és egy felső háromszögmátrix szorzatára.
- -
Egy nxn-es mátrixnak akkor létezik LU-felbontása, ha az első n-1 főminora nem nulla.
- -
Hogyha egy olyan mátrix LU felbontására van szükségünk, amelynek valamelyik (nem utolsó) főminora 0, akkor megtehetjük azt, hogy egy premutációs mátrix segítségével felcseréljük a sorait.
- -
Az LU-felbontás módszere nem négyzetes mátrixokra ugyanolyan, mint eddig, a Gauss elimináció segítségével történik.
- -
Ez tulajdonképpen egy olyan LU-felbontás, ahol az U mátrix az L-nek a transzponáltja.
- -
A QR-felbontás azt jelenti, hogy egy mátrixot egy ortogonális és egy felsőháromszögmátrix szorzatára bontjuk.
Interpolációs polinomok
- -
Az interpoláció egy közelítő módszer, amely a függvény ismert értékei alapján ad közelítést a nem ismert értékeire.
- -
A Lagrange-féle interpolációs polinom megadja azt a polinomot, amely $x_1$-ben $y_1$-et, $x_2$-ben $y_2$-t és így tovább $x_n$-ben $y_n$ értéket vesz föl.
- -
A Newton interpoláció első lépése, hogy elkészítjűk az úgynevezett Newton-együtthatókat. Ezt követően ezek segítségével állítjuk elő a polinomot.
- -
A Hermite interpoláció abban különbözőik a Lagrange és Newton féle interpolációktól, hogy az $x_1, x_2, \dots , x_n$ helyeken nem csak az eredeti polinom-függvény értékeit, hanem a deriváltjait is nézzük.
- -
Az interpoláció egy közelítő módszer, amely a függvény ismert értékei alapján ad közelítést a nem ismert értékeire. Ennek hibájának a megbecsléséhez van egy remek képlet.
Valószínűségszámítás alapok
- -
Eseményeknek nevezzük a valószínűségi kísérlet során bekövetkező lehetséges kimeneteleket.
- -
A valószínűség kiszámításának klasszikus modellje az, hogy megszámoljuk hány elemi eseményből áll a vizsgált esemény és ezt elosztjuk az összes elemi esemény számával.
Visszatevéses és visszatevés nélküli mintavétel
- -
Ha a szövegben valószínűségek vannak megadva, akkor a binomiális eloszlást szoktuk használni.
- -
A visszatevées mintavételhez kapcsolódó eloszlás a binomiális eloszlás.
- -
Ha húzásokat vizsgálunk úgy, hogy a kihúzott elemeket nem tesszük vissza, akkor ez egy visszatevés nélküli mintavétel.
- -
A hipergeometriai eloszlás a visszatevés nélküli mintavételhez kapcsolódó eloszlás.
Eloszlásfüggvény, sűrűségfüggvény
- -
Folytonosnak nevezzük azokat a valószínűségi változókat, amik folytonos mennyiségeket mérnek, ilyen például az idő, a távolság.
- -
Diszkrétnek nevezzük azokat a valószínűségi változókat, amik megszámlálhatóan sok értéket vesznek fel.
- -
Az X valószínűségi változó eloszlásfüggvénye F(x). F(x)=P(x<X) Vagyis minden x számhoz hozzárendeli annak a valószínűségét, hogy X<x. Nos ez elég izgi..
- -
A sűrűségfüggvény a görbe alatti területekkel írja le egy esemény valószínűségét.
- -
Az eloszlásfüggvény határértéke minusz végtelenben 0, plusz végtelenben 1, monoton nő és balról folytonos.
- -
A sűrűségfüggvény integrálja minusz végtelentől plusz végtelenig 1, és nem negatív.
- -
Három nagyon fontos összefüggés eloszlásfüggvény és sűrűségfüggvény között.
- -
Az $X$ valószínűségi változó $F(x)$ eloszlásfüggvényéből úgy kapjuk meg az $f(x)$ sűrűségfüggvényét, hogy az $F(x)$ eloszlásfüggvényt deriváljuk. Fordítva pedig integrálni kell.
Várható érték és szórás
- -
A valószínűségi változó értékeinek valószínűségekkel súlyozott átlaga. De valójában ez rém egyszerű, nézzünk rá néhány példát.
- -
A szórás azt mutatja meg, hogy a várható érték körül milyen nagy ingadozásra számíthatunk.
- -
Folytonos valószínűségi változók esetén a várható értéket egy integrálás segítségével számítjuk.
- -
Folytonos valószínűségi változó esetén a szórást ugyanúgy kell számolni, mint diszkrét valószínűségi változó esetén:
Exponenciális eloszlás és normális eloszlás
- -
- -
Mennyiségek eloszlása.
Poisson eloszlás, binomiális eloszlás
- -
A hipergeometriai eloszlás egy diszkrét eloszlás, ahol N darab elem közül kiválasztunk n darab elemet visszatevés nélkül. Az összes elem között K darab selejtes található. Az eloszlás annak valószínűségét írja le, hogy a kiválasztott elemek között éppen k darab selejtes van.
- -
A binomiális eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a valószínűsége p és egymástól függetlenül elvégzünk n darab kísérletet, ahol a kísérletek mindegyikében az esemény vagy bekövetkezik vagy nem. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
- -
A Poisson eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a várható előfordulása lambda darab. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
- -
Az eltelt idők és a távolságok eloszlása.
Hipotézisvizsgálat, próbafüggvények
- -
Az elfogadási tartomány az a tartomány, ahová ha a próba értéke kerül, akkor a nullhipotézist elfogadjuk.
- -
A kritikus tartomány az a tartomány, ahová ha a próba értéke kerül, akkor a nullhipotézist elvetjük.
- -
A szignifikanciaszint a hibás döntés valószínűsége.
- -
A hipotézis megfogalmazása. A próbafüggvény kiválasztása. Szignifikanciaszint és kritikus tartomány. Mintavétel és döntés.
- -
A sokaság normális eloszlású, szórása $\sigma$, $H_0$ a sokaság átlagára vonatkozik, a minta elemszáma $n$.
- -
A sokaság normális eloszlású, szórása nem ismert, $H_0$ a sokaság átlagára vonatkozik, a minta elemszáma $n$
- -
A sokaság tetszőleges eloszlású, szórása nem ismert, $H_0$ a sokaság átlagára vonatkozik, a minta $n$ elemű, elemszáma nagy.
- -
A sokaság tetszőleges eloszlású, $H_0$ a sokasági arányra vonatkozik, a minta $n$ elemű, elemszáma nagy
- -
A sokaság normális eloszlású, $H_0$ a sokasági szórásra vonatkozik, a minta $n$ elemű.
- -
A sokaság eloszlására irányuló vizsgálat.
- -
A sokaságon belül két ismérv függetlenségére irányuló vizsgálat. $H_0$: a két ismérv független, az ellenhipotézis pedig, $H_1$: a két ismérv közti kapcsolat sztochasztikus vagy függvényszerű.
- -
Két sokaságban valamely változó eloszlásának egyezőségére irányuló vizsgálat. $H_0$: a két sokaságban az eloszlás egyező, az ellenhipotézis pedig, $H_1$: a két eloszlás nem egyező.
- -
Mindkét sokaság normális eloszlású, szórásaik $\sigma_X$ és $\sigma_Y$.
- -
A két sokaság normális eloszlású és szórásaik egyformák.
- -
A két sokaság eloszlása és szórása nem ismert, mindkettő szórása véges, és mindkét minta elemszáma elég nagy.
- -
Két sokaság szórásának összehasonlítására irányuló próba, ha mindkét sokaság normális eloszlású. A nullhipotézis $H_0$: $\sigma_1^2 = \sigma_2^2$
- -
Több sokaság várható értékének összehasonlítására vonatkozó próba, ha mindegyik sokaság normális eloszlású és azonos szórású.
- -
A Bartlett-próba több sokaság szórásának összehasonlítására vonatkozó próba, ha mindegyik sokaság normális eloszlású.