14 témakör, 257 rövid és szuper érthető epizód

Ez az ütős Matematika 1 Analízis 1 kurzus segít mindent azonnal megérteni és sikeresen vizsgázni. 257 rövid és szuper-érthető epizód és 1 teszt segítségével 14 témakörön keresztül vezet végig az őrülten jó Matematika 1 Analízis 1 rögös útjain. Mindezt olyan laza stílusban, mintha csak a rántotta elkészítésének problémájáról lenne szó.

Tartalomjegyzék: 

A kurzus 14 szekcióból áll: 01 Halmazok, egyenletek, azonosságok, 02 Trigonometria, komplex számok, polinomok, 03 Vektorok, mátrixok, determináns, 04 Függvények, függvények ábrázolása, 05 Függvények tulajdonságai, függvénytranszformációk, 06 Sorozatok határértéke, sorok, 07 Függvények határértéke és folytonossága, 08 Differenciálhatóság, az érintő egyenlete, 09 Deriválás, 10 Deriválás alkalmazásai, 11 Határozatlan integrálás, 12 Határozott integrálás, 13 Határozott integrál alkalmazásai, 14 Racionális törtfüggvények integrálása

01 Halmazok, egyenletek, azonosságok

  • -

    Az A és B halmazok uniója: Azon elemek halmaza, amelyek legalább az egyik halmazban benne vannak. Az A és B halmazok metszete: Azon elemek halmaza, amelyek mindkét halmazban benne vannak. Az A és B halmazok különbsége: Azon elemek halmaza, amelyek az A halmazba benne vannak, de a B halmazba nem. Az A halmaz komplementere a H alaphalmazon nézve: Az alaphalmaz azon elemeinek halmza, amelyek nincsenek benne az A-ban.

  • -

    Az A és B halmazok uniója: Azon elemek halmaza, amelyek legalább az egyik halmazban benne vannak. Az A és B halmazok metszete: Azon elemek halmaza, amelyek mindkét halmazban benne vannak. Az A és B halmazok különbsége: Azon elemek halmaza, amelyek az A halmazba benne vannak, de a B halmazba nem. Az A halmaz komplementere a H alaphalmazon nézve: Az alaphalmaz azon elemeinek halmza, amelyek nincsenek benne az A-ban.

  • -

    A logikai szita formula a halmazok elemszámának meghatározását segítő képlet.

  • -

    Elsőfokú egyenletek megoldása, a mérleg elv. Törtes egyenletek megoldása.

  • -

    A másodfokú egyenlet megoldóképletének gyök alatti része a diszkrimináns.

  • -

    A másodfokú egyenlet megoldóképlete és alkalmazása.

  • -

    Az elsőfokú egyenlőtlenségeknél még izgalmasabbak a másodfokú egyenlőtlenségek.

  • -

    Gyökös kifejezések szorzása és osztása közti összefüggések.

  • -

    Egy a szám köbgyöke az a szám, aminek a köbe a.

  • -

    Köbgyökös kifejezések szorzása és osztása közti összefüggések.

  • -

    A gyökvonás másképpp viselkedik páros, illetve páratlan gyökkitevő esetén, így kétféle definíciónk lesz.

  • -

    Egy a nem negatív szám négyzetgyöke az a nem negatív szám, aminek a négyzete a.

  • -

    Megnézzük, hogy milyen izgalmak fordulhatnak elő a gyökös egyenletek világában. Hogyan kell megoldani egy gyökös egyenletet? Mikor lehet egy egyenletet négyzetre emelni? Milyen kikötéseket kell tenni egy gyökös egyenlet megoldásánál? Törtes gyökös egyenletek. Másodfokú egyenletre vezető gyökös egyenletek.

  • -

    Az exponenciális függvények meglehetősen fontosak a matematikában, sőt nem csak a matematikában. Itt jönnek az exponenciális függvények.

  • -

    Készítünk egy szuper-érthető összefoglalót a hatványazonosságokból. Megnézzük, hogyan kell a hatványazonosságokat használni. Megnézzük mi az az exponenciális függvény és hogyan kell ábrázolni.

  • -

    Mik azok az exponenciális egyenletek? Hogyan kell megoldani egy exponenciális egyenletet? Törtes exponenciális egyenletek. Másodfokú egyenletre vezető exponenciális egyenletek.

  • -

    Mik azok a logaritmusos egyenletek? Hogyan kell megoldani egy logaritmikus egyenletet? Milyen kikötéseket kell tenni egy logaritmusos egyenlet megoldásánál? Törtes logaritmikus egyenletek. Másodfokú egyenletre vezető logaritmikus egyenletek.

  • -

    Itt végre szuper-érthetően kiderül, hogy mi az a logaritmus. Készítünk egy gyors kis összefoglalót a logaritmus azonosságairól. Megnézzük, hogyan kell a logaritmus azonosságokat használni. Megnézzük mi az a logaritmus függvény és hogyan kell ábrázolni.

  • -

    Készítünk egy szuper-érthető összefoglalót a logaritmus azonosságokról. Megnézzük, hogyan kell az azonosságokat használni, milyen kikötéseket kell tenni a logaritmikus kifejezéseknél, hogyan néz ki a logaritmus függvény.

02 Trigonometria, komplex számok, polinomok

03 Vektorok, mátrixok, determináns

  • -

    Egy vektor hosszát megkapjuk, ha vesszük a koordinátái négyzetösszegének a gyökét. Két pont távolsága az őket összekötő vektor hossza.

  • -

    Vektorok összeadásakor összeadjuk az x koordinátákat és összeadjuk az y koordinátákat. Kivonáskor vesszük az x koordináták különbségét és az y koordináták különbségét.

  • -

    Egy vektor 90°-os elforgatásához megcseréljük a két koordinátáját és az egyik előjelét megváltoztatjuk.

  • -

    Két vektor skaláris szorzata a vektorok hosszának szorzata a közbezárt szögük koszinuszával.

  • -

    Az egyenes egyenletének felírásához kell egy pontja és egy normálvektora.

  • -

    Két pont közti vektort a vektorok koordinátáinak különbségével írhatunk fel.

  • -

    Két pont távolsága gyök alatt a koordináták különbségeinek négyzetösszege.

  • -

    A sík egyenletének felírásához kell egy pontja és egy normálvektora.

  • -

    Két vektor vektoriális szorzatát egy 3x3-as mátrix determinánsával számíthatjuk ki, ahol a mátrix első sora egységvektorok, a második és harmadik sora pedig az a és b vektorok.

04 Függvények, függvények ábrázolása

  • -

    A függvény értékkészlete azoknak az elemeknek a halmaza a B halmazban, amelyek hozzá vannak rendelve valamely A halmazbeli elemekhez.

  • -

    Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.

  • -

    Megnézzük, hogy melyik függvény hogyan néz ki, aztán megnézzük a külső és belső függvénytranszformációkat. Eltolás az x tengely mentén, eltolás az y tengely mentén, tükrözés, nyújtás.

  • -

    A függvény konvexitása megmondja, hogy a függvény szomorú vagy vidám hangulatban van.

  • -

    A függvény monotonitása lehet növekedő, csökkenő, szigorúan monton növekedő vagy szigorúan monoton csökkenő.

  • -

    Globális és lokális maximumok és minimumok.

  • -

    Mikor páros, mikor páratlan vagy éppen egyik sem egy függvény.

  • -

    Lássuk mik azok a polinomfüggvények, és hogyan kell őket ábrázolni.

05 Függvények tulajdonságai, függvénytranszformációk

  • -

    Megnézzük, hogy melyik függvény hogyan néz ki, aztán megnézzük a külső és belső függvénytranszformációkat. Eltolás az x tengely mentén, eltolás az y tengely mentén, tükrözés, nyújtás.

  • -

    A függvény konvexitása megmondja, hogy a függvény szomorú vagy vidám hangulatban van.

  • -

    A függvény monotonitása lehet növekedő, csökkenő, szigorúan monton növekedő vagy szigorúan monoton csökkenő.

  • -

    Globális és lokális maximumok és minimumok.

  • -

    A függvény hozzárendelésének megfordításával kapjuk a függvény inverzfüggvényét, amennyiben a megfordított hozzárendelés is egy egyértelmű hozzárendelés.

06 Sorozatok határértéke, sorok

07 Függvények határértéke és folytonossága

08 Differenciálhatóság, az érintő egyenlete

  • -

    Egy szelő egyenes meredeksége a differenciahányados.

  • -

    Egy függvény érintő egyenesének meredeksége a differenciálhányados.

  • -

    Függvény konstansszorosának, két függvény összegének, szorzatának és hányadosának deriválási szabályai. Összetett függvények deriválási szabálya.

  • -

    Egy szelő egyenes meredeksége a differenciahányados.

  • -

    Egy függvény érintő egyenesének meredeksége a differenciálhányados.

  • -

    Konstans deriváltja, polinomok deriválási szabálya. Az exponenciális és logaritmus függvények deriválása. Trigonometrikus függvények deriváltjai.

  • -

    A függvény érintője egy olyan egyenes, amely egy függvényt pontosan egy pontban érint.

09 Deriválás

10 Deriválás alkalmazásai

11 Határozatlan integrálás

12 Határozott integrálás

  • -

    A Newton-Leibniz formula egy egyszerűen használható képlet a határozott integrál kiszámításához. Ez a tétel az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.

  • -

    Egy zárt intervallumon értelmezett függvény akkor Riemann integrálható, ha egyetlen olyan szám létezik, amely bármely alsó közelítő összegénél nagyobb egyenlő, és bármely felső közelítő összegénél kisebb egyenlő.

13 Határozott integrál alkalmazásai

14 Racionális törtfüggvények integrálása