Matematika 1 Analízis 1
A kurzus 17 szekcióból áll: Halmazok, egyenletek, azonosságok, Trigonometria, komplex számok, polinomok, Vektorok, mátrixok, determináns, Függvények, függvények ábrázolása, Összetett függvény, inverz függvény, Sorozatok határértéke, Határérték epszilonos definíciója, monotonitás, Végtelen sorok, Függvények határértéke és folytonossága, Deriválás, Differenciálhatóság, az érintő egyenlete, L'Hospital szabály, Könnyű teljes függvényvizsgálat és szélsőértékfeladatok, Teljes függvényvizsgálat, Határozatlan integrálás, Határozott integrálás és alkalmazásai, Racionális törtfüggvények integrálása
Halmazok, egyenletek, azonosságok
- -
Az A és B halmazok uniója: Azon elemek halmaza, amelyek legalább az egyik halmazban benne vannak. Az A és B halmazok metszete: Azon elemek halmaza, amelyek mindkét halmazban benne vannak. Az A és B halmazok különbsége: Azon elemek halmaza, amelyek az A halmazba benne vannak, de a B halmazba nem. Az A halmaz komplementere a H alaphalmazon nézve: Az alaphalmaz azon elemeinek halmza, amelyek nincsenek benne az A-ban.
- -
A logikai szita formula a halmazok elemszámának meghatározását segítő képlet.
- -
Elsőfokú egyenletek megoldása, a mérleg elv. Törtes egyenletek megoldása.
- -
A másodfokú egyenlet megoldóképlete és alkalmazása.
- -
A másodfokú egyenlet megoldóképletének gyök alatti része a diszkrimináns.
- -
Egy a nem negatív szám négyzetgyöke az a nem negatív szám, aminek a négyzete a.
- -
Gyökös kifejezések szorzása és osztása közti összefüggések.
- -
Egy a szám köbgyöke az a szám, aminek a köbe a.
- -
Köbgyökös kifejezések szorzása és osztása közti összefüggések.
- -
A gyökvonás másképpp viselkedik páros, illetve páratlan gyökkitevő esetén, így kétféle definíciónk lesz.
- -
Megnézzük, hogy milyen izgalmak fordulhatnak elő a gyökös egyenletek világában. Hogyan kell megoldani egy gyökös egyenletet? Mikor lehet egy egyenletet négyzetre emelni? Milyen kikötéseket kell tenni egy gyökös egyenlet megoldásánál? Törtes gyökös egyenletek. Másodfokú egyenletre vezető gyökös egyenletek.
- -
Készítünk egy szuper-érthető összefoglalót a hatványazonosságokból. Megnézzük, hogyan kell a hatványazonosságokat használni. Megnézzük mi az az exponenciális függvény és hogyan kell ábrázolni.
- -
Az exponenciális függvények meglehetősen fontosak a matematikában, sőt nem csak a matematikában. Itt jönnek az exponenciális függvények.
- -
Mik azok az exponenciális egyenletek? Hogyan kell megoldani egy exponenciális egyenletet? Törtes exponenciális egyenletek. Másodfokú egyenletre vezető exponenciális egyenletek.
- -
Itt végre szuper-érthetően kiderül, hogy mi az a logaritmus. Készítünk egy gyors kis összefoglalót a logaritmus azonosságairól. Megnézzük, hogyan kell a logaritmus azonosságokat használni. Megnézzük mi az a logaritmus függvény és hogyan kell ábrázolni.
- -
Készítünk egy szuper-érthető összefoglalót a logaritmus azonosságokról. Megnézzük, hogyan kell az azonosságokat használni, milyen kikötéseket kell tenni a logaritmikus kifejezéseknél, hogyan néz ki a logaritmus függvény.
Trigonometria, komplex számok, polinomok
- -
Mi az egység sugarú kör? Mi az a szinusz és koszinusz? Mire jó a szinusz és a koszinusz? Mi az a radián? Mi a kapcsolat a fok és a radián között?
- -
Trigonometriai képlet összefoglaló. Összefüggések a tangens és kotangens között. A trigonometria alapegyenlete. Szögek kétszeresének szinusza és koszinusza.
- -
Az egységkör egy szöggel elforgatott egységvektorának végpontjának x koordinátáját nevezzük a szög koszinuszának
- -
Az egységkör egy szöggel elforgatott egységvektorának végpontjának y koordinátáját nevezzük a szög szinuszának.
- -
Egy szög tangense a szög szinuszának és koszinuszának hányadosával egyenlő.
- -
Szinuszt és koszinuszt tartalmazó egyenletek megoldásának lépései.
- -
Komplex számok összeadásakor összeadjuk a valós részeket és külön összeadjuk a képzetes részeket. Kivonáskor külön kivonjuk egymásból a valós részeket és a képzetes részeket.
- -
Egy képlet az a+bi alakú komplex számok szorzásához.
- -
A komplex számok egy valós és egy imaginárius (képzetes) számból épülnek föl. A valós számok a szokásos x tengelyen helyezkednek el, míg az imaginárius számok egy erre merőleges y tengelyen, amit imaginárius tegelynek, vagy képzetes tengelynek nevezünk.
- -
Olyan számok, amelyek valós és képzetes részből épülnek fel.
- -
A valós számokat úgy érdemes elképzelni, mint egy koordinátarendszer x tengelyét. És minden helyet ki is töltenek a valós számok ezen a számegyenesen. A komplex számok egy valós és egy imaginárius (képzetes) részből épülnek föl, és szemléltetésükhöz nem egy, hanem két koordinátatengelyre van szükség. Az x tengelyen vannak a valós számok, az y tengelyen pedig az imaginárius, vagyis a képzetes számok. A valós számok tengelyén az egység a szokásos 1, míg az imaginárius számok tengelyén az egység az i. A kétb tengely által kifeszített síkot nevezzük komplex számsíknak, vagy másknt Gauss-féle számsíknak.
- -
A komplex szám tükörképe az x tengelyre.
- -
Egy komplex szám abszolútértéke az origotól mért távolsága.
- -
A komplex számok osztását, szorzását és hatványozását megkönnyítő forma.
- -
Képlet komplex számok szorzásához és osztásához, ha azok trigonometrikus alakban vannak megadva.
- -
Egy képlet komplex számok hatványozásához, ha a komplex szám trigonometrikus alakban van.
- -
Egy képlet komplex számok gyökvonásához, ha a komplex szám trigonometrikus alakban van.
- -
Képlet komplex számok szorzásához és összeadásához, ha a komplex számok exponenciális alakban vannak megadva.
- -
Egy képlet komplex számok hatványozásához, ha a komplex szám exponenciális alakban van.
- -
Egy képlet komplex számok gyökvonásához, ha a komplex szám exponenciális alakban van.
Vektorok, mátrixok, determináns
- -
A vektor egy irányított szakasz.
- -
Vektorok összeadásakor összeadjuk az x koordinátákat és összeadjuk az y koordinátákat. Kivonáskor vesszük az x koordináták különbségét és az y koordináták különbségét.
- -
Egy vektor hosszát megkapjuk, ha vesszük a koordinátái négyzetösszegének a gyökét. Két pont távolsága az őket összekötő vektor hossza.
- -
Két pont közti vektor a végpontba mutató helyvektor minusz a kezdőpontba mutató helyvektor.
- -
Két vektor skaláris szorzata a vektorok hosszának szorzata a közbezárt szögük koszinuszával.
- -
Egy vektor 90°-os elforgatásához megcseréljük a két koordinátáját és az egyik előjelét megváltoztatjuk.
- -
Két vektor skalárisszorzatát kiszámolhatjuk a vektorok hosszának és hajlásszögének segítségével, illetve a vektorok koordinátáival is.
- -
Két vektor merőleges egymásra, ha skaláris szorzatuk 0.
- -
Az egyenes egyenletének felírásához kell egy pontja és egy normálvektora.
- -
A sík egyenletének felírásához kell egy pontja és egy normálvektora.
- -
Két pont közti vektort a vektorok koordinátáinak különbségével írhatunk fel.
- -
Két pont távolsága gyök alatt a koordináták különbségeinek négyzetösszege.
- -
Az egyenes egyenletének felírásához a síkban szükségünk van az egyenes egy pontjára és a normálvektorára.
- -
A sík egyenletének felírásához kell a sík egy pontja és a normálvektora.
- -
Két vektor vektoriális szorzatát egy 3x3-as mátrix determinánsával számíthatjuk ki, ahol a mátrix első sora egységvektorok, a második és harmadik sora pedig az a és b vektorok.
- -
Két vektor vektoriális szorzata egy olyan harmadik vektort ad, ami merőleges a két vektor által kifeszített síkra.
- -
- -
Ha egy mátrixot egy számmal szorzunk, akkor a mátrix összes elemét meg kell szorozni a számmal.
- -
Ha egy mátrixot osztunk egy számmal, akkor a mátrix minden elemét osztani kell a számmal.
- -
Két mátrix összeadásakor összeadjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet összeadni, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix kivonásakor kivonjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet kivonni egymásból, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix szorzata akkor létezik, ha a bal oldali mátrix oszlopainak száma megegyezik a jobb oldali mátrix sorainak számával. Az eredménymátrix i-edik sorának j-edik elemét úgy kapjuk, hogy a bal oldali mátrix i-edik sorát skalárisan szorozzuk a jobb oldali mátrix j-edik oszlopával. (Tehát az első elemet az elsővel, a másodikat a másodikkal stb. szorozzuk, majd összeadjuk)
- -
A mátrix összeadás kommutatív és asszociatív.
- -
A mátrixszorzás nem kommutattív, de asszociatív.
- -
A kvadratikus mátrix négyzetes mátrix vagyis ugyanannyi sora van, mint oszlopa.
- -
A diagonális mátrix olyan kvadratikus mátrix, aminek a főátlóján kívüli elemek nullák.
- -
Az egységmátrixok olyan diagonális mátrixok, aminek minden főátló-eleme egy.
- -
Az inverz mátrix egy olyan mátrix, hogy ha azzal szorozzuk az eredeti mátrixot, akkor egységmátrixot kapunk. Ha balról szorozva kapunk egységmátrixot, akkor bal inverz, ha jobbról szorozva, akkor jobb inverz mátrix.
- -
A transzponált a mátrix sorainak és oszlopainak felcserélése.
- -
Azokat a mátrixokat, melyek transzponáltjuk önmaga, szimmetrikus mátrixnak nevezzük.
- -
Vektort egy számmal úgy szorzunk, hogy a vektor minden koordinátáját megszorozzuk a számmal.
- -
Vektort egy számmal úgy osztunk, hogy a vektor minden koordinátáját leosztjuk a számmal.
- -
Két vektort úgy adunk össze, hogy minden egyes koordinátájukat külön-külön össze adjuk.
- -
Két vektort úgy vonunk ki egymásból, hogy minden egyes koordinátájukat külön-külön kivonjuk egymásból.
- -
A skaláris szorzat két vektor közti művelet, ami csinál belőlük egy számot.
- -
Két vektor diadikus szorzata egy mátrix. Lássuk milyen.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak sorait.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak egy oszlopában lévő elemeit.
- -
Ha egy mátrixot megszorzunk jobbról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik oszlopát.
- -
Ha egy mátrixot megszorzunk balról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik sorát.
- -
A determináns úgy működik, hogy minden négyzetes mátrixból csinál egy valós számot. Hogy miért, és, hogy hogyan, az mindjárt kiderül.
- -
Egy 2x2-es mátrix determinánsát úgy kapjuk, hogy a bal átló elemeinek szorzatából kivonjuk a jobb átló elemeinek szorzatát.
- -
Egy nem túl jó módszer a determináns kiszámolására.
- -
Egy túl jó módszer a determináns kiszámolására.
- -
Példák mikor nulla egy mátrix determinánsa. Két mátrix szorzatának determinánsa.
- -
Azokat a mátrixokat nevezzük szingulárisnak, amelyek determinánsa nulla.
- -
Azokat a mátrixokat nevezzük regulárisnak, amelyek determinánsa nem nulla.
Függvények, függvények ábrázolása
- -
A függvény értékkészlete azoknak az elemeknek a halmaza a B halmazban, amelyek hozzá vannak rendelve valamely A halmazbeli elemekhez.
- -
Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.
- -
Megnézzük, hogy melyik függvény hogyan néz ki, aztán megnézzük a külső és belső függvénytranszformációkat. Eltolás az x tengely mentén, eltolás az y tengely mentén, tükrözés, nyújtás.
- -
A függvény monotonitása lehet növekedő, csökkenő, szigorúan monton növekedő vagy szigorúan monoton csökkenő.
- -
Globális és lokális maximumok és minimumok.
- -
A függvény konvexitása megmondja, hogy a függvény szomorú vagy vidám hangulatban van.
- -
Mikor páros, mikor páratlan vagy éppen egyik sem egy függvény.
- -
Lássuk mik azok a polinomfüggvények, és hogyan kell őket ábrázolni.
Összetett függvény, inverz függvény
- -
Ha két függvényt egymásba ágyazunk, összetett függvényt kapunk.
- -
A függvény hozzárendelésének megfordításával kapjuk a függvény inverzfüggvényét, amennyiben a megfordított hozzárendelés is egy egyértelmű hozzárendelés.
Sorozatok határértéke
- -
Nevezetes 0-hoz tartó sorozatok.
- -
Nevezetes végtelenhez tartó sorozatok.
- -
Nevezetes gyökös sorozatok határértéke.
- -
Exponenciális kifejezések határértéke.
- -
Egy nevezetes sorozatcsalád, az e-hez tartó sorozatok.
- -
Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük. Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük. Az ugráló sorozatokat oszcillálónak nevezzük. Lássunk néhány példát.
- -
Ha két rendőr közrefog egy honpolgárt és a két rendőr konvergál a rendőrőrsre, akkor az általuk közrefogott honpolgárnak is szükségképpen konvergálnia kell a rendőrőrsre..
- -
- -
A végtelenbe tartó sorozatok nagyságrendi sorrendje azt mondja meg, hogy melyik sorozat milyen ütemben tart a végtelenbe. Minél nagyobb nagyságrendű egy sorozat, annál gyorsabban tart a végtelenbe
- -
Egy sorozatnak torlódási pontja az A szám, ha bármilyen kis környezetében a sorozatnak végtelen sok tagja van.
- -
Egy sorozat limesz inferiorja a torlódási pontjainak infinuma. A limesz szuperiorja a torlódási pontjainak szuprémuma.
Határérték epszilonos definíciója, monotonitás
- -
A sorozatok egyik legfontosabb tulajdonsága a határértékük, ami azt jelenti, hogy mi történik a sorozattal ahogy egyre és egyre nagyobb indexű tagjait vizsgáljuk.
- -
Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük.
- -
Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük.
- -
A sorozat monotonitása lehet monton nő, monoton csökkenő, szigorúan monoton nő, szigorúan monoton csökkenő.
Végtelen sorok
- -
A mértani sor képlete, példák mértani sorokra.
- -
Egy végtelen sor akkor konvergens, ha részletösszegsorozata konvergens.
- -
Ha egy sorozat határértéke nem 0, akkor a belőle képzett sor divergens.
- -
Speciális sorok.
- -
Egy másik fontos konvergenciakritérium, ami az n-edik tag n-edik gyökének segítségével dönti el a konvergenciát.
- -
Egy fontos konvergenciakritérium, amely az n+1-edik tag és az n-edik tag hányadosával dönti el a konvergenciát.
- -
Speciális sorok.
- -
A sorok konvergenciájának megállapítására vonatkozó képletek.
- -
Tört hatványának sorának konvergenciája a hatványkitevőtől függően.
- -
Olyan sorok, amelyek valójában az első és az utolsó tagon kívül semmilyen más tagot nem tartalmaznak.
- -
Ha $x_0$ a hatványsor középpontja, akkor az $x_0$ pont $r$ sugarú környezetét konvergencia tartománynak nevezzük, ahol $r$ a konvergenciasugár.
- -
A hatványsorok konvergenciájának vizsgálata.
- -
Ha $x_0$ a hatványsor középpontja, akkor az $x_0$ pont $r$ sugarú környezetét konvergencia tartománynak nevezzük, ahol $r$ a konvergenciasugár.
- -
A hatványsorok konvergenciájának vizsgálata.
Függvények határértéke és folytonossága
- -
Egy függvényt akkor nevezünk folytonosnak valamely pontban, ha itt a függvényérték és a határérték megegyezik. Lássuk miért is ennyire fontos ez.
- -
Függvények szakadása négy féle lehet: megszüntethető szakadás, ugrás, nem megszüntethető, nem véges szakadás, nem megszüntethető oszcilláló szakadás.
- -
Beszéljünk egy kicsit a trigonometrikus függvények határértékéről. Néhány nevezetes határérték, élükön a sinx/x típusúval.
Deriválás
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
Konstans deriváltja, polinomok deriválási szabálya. Az exponenciális és logaritmus függvények deriválása. Trigonometrikus függvények deriváltjai.
- -
Függvény konstansszorosának, két függvény összegének, szorzatának és hányadosának deriválási szabályai. Összetett függvények deriválási szabálya.
- -
A lánc-szabály az összetett függvények deriválási szabálya.
- -
A sinh és cosh hiperbolikus függvények közt fennálló azonosságok.
- -
A cosh, sinh és tanh függvények deriváltjai.
- -
A cosh, sinh és tanh függvények inverzfüggvényei.
- -
Az arcosh, arsinh és artanh függvények deriváltjai.
Differenciálhatóság, az érintő egyenlete
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
Konstans deriváltja, polinomok deriválási szabálya. Az exponenciális és logaritmus függvények deriválása. Trigonometrikus függvények deriváltjai.
- -
Függvény konstansszorosának, két függvény összegének, szorzatának és hányadosának deriválási szabályai. Összetett függvények deriválási szabálya.
- -
A függvény érintője egy olyan egyenes, amely egy függvényt pontosan egy pontban érint.
L'Hospital szabály
- -
A határérték számítás csodafegyvere, egy szuper módszer, amivel nagyon sok bonyolult határérték gyorsan kiszámolható.
- -
Néhány exponenciális, logaritmusos és végtelenhez, nullához tartó nevezetes sorozatok határértékei.
Teljes függvényvizsgálat
- -
Az első derivált azt írja le, hogy a függvény mikor nő és mikor csökken.
- -
A második derivált a függvény hangulatát írja le, ha pozitív, akkor a függvény vidám, ha negatív, akkor szomorkodik.
- -
A deriválás után megállapítjuk a derivált előjelét. Amikor a derivált nulla, olyankor stacionárius pont van.
- -
Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.
Határozatlan integrálás
- -
Az f(x) függvény primitív függvényének jele F(x) és azt tudja, hogy ha deriváljuk, akkor visszakapjuk f(x)-et. Egy függvény primitív függvényeinek halmazát nevezzük a függvény határozatlan integráljának.
- -
Polinomok integrálása. Törtfüggvény integrálása. Exponenciális függvények integrálása. Trigonometrikus függvények integrálása.
- -
Polinomok, törtfüggvény, exponenciális függvények, trigonometrikus függvények integráljainak lineáris helyettesítései.
- -
Integráláskor a konstans szorzó kivihető.
- -
Összeget külön-külön is integrálhatunk.
- -
Ha a szorzás elvégezhető, akkor végezzük el, és utána integráljunk.
- -
Szorzat integrálásának egy speciális esete, amikor a függvény n-edik hatványon van és meg van szorozva a deriváltjával.
- -
Ezzel a remek módszerrel szorzatokat tudunk integrálni úgy, hogy egy bonyolultabb integrálásból csinálunk egy egyszerűbb integrálást.
- -
Összetett függvényeket általában akkor tudunk integrálni, ha azok meg vannak szorozva a belső függvényük deriváltjával. Van is erre egy remek kis képlet.
- -
Próbálkozzunk a tört földarabolásával és utána integráljunk.
- -
Törtek integrálásának egy speciális esete, amikor a tört számlálója a nevező deriváltja.
- -
A helyettesítéses integrálás lényege, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk majd megoldani a feladatot.
- -
A helyettesítéses integrálás lényege, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk majd megoldani a feladatot.
- -
A helyettesítéses integrálás úgy működik, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk megoldani a feladatot.
A helyettesítéses integrálás egyik legfurcsább esete az $u = \tan{ \frac{x}{2} } $. Olyankor használjuk, ha a törtben $\sin{x}$ és $\cos{x}$ is csak első fokon szerepel.
Határozott integrálás és alkalmazásai
- -
A Newton-Leibniz formula egy egyszerűen használható képlet a határozott integrál kiszámításához. Ez a tétel az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
- -
Egy zárt intervallumon értelmezett függvény akkor Riemann integrálható, ha egyetlen olyan szám létezik, amely bármely alsó közelítő összegénél nagyobb egyenlő, és bármely felső közelítő összegénél kisebb egyenlő.
- -
Végtelenbe nyúló tartományok területének kiszámolása egy fontos függvénnyel.
- -
Forgástestek térfogatának és felszínének képletei határozott integrálással.
Racionális törtfüggvények integrálása
- -
A racionális törtfüggvények integrálásához a függvényeket parciális törtekre kell bontani, majd a parciális törteket egyesével integrálni.