Matematika 2 GTK
A kurzus 9 szekcióból áll: Deriválás, Függvények érintőjének egyenlete, Függvényvizsgálat, gazdasági feladatok, Parciális deriválás, kétváltozós függvények, Határozatlan és határozott integrálás, Eloszlás, eloszlásfüggvény, sűrűségfüggvény, Várható érték és szórás, Markov és Csebisev egyenlőtlenségek, Nevezetes diszkrét és folytonos eloszlások
KETTŐS INTEGRÁL
- A kettősintegrál - A kettősintegrál kétváltozós függvények által meghatározaott felületek alatt elhelyezkedő térfogatok kiszámolására valók.
- Példák kettősintegrálra - Néhány feladat kettősintegrálok kiszámolására.
- x és y szerinti integrálás - A parciális deriválás megfordításaként először x majd y szerint integrálunk.
- Kettősintegrál normáltartományokon - Integrálás függvények által határolt tartományok felett.
- Az integrálás sorrendjének felcserélése - Vannak olyan esetek, amikor nem segít más, mint felcserélni az integrálás sorrendjét.
DIFFERENCIÁLEGYENLETEK
- Mese a differenciálegyenletekről - A differenciálegyenletek olyan egyenletek, amelyben az ismeretlenek függvények. Nos ez írtó izgi lesz...
- A differenciálegyenlet rendje - Azt mondja meg, hogy az ismeretlen függvény maximum hanyadik deriváltja szerepel az egyenletben.
- A differenciálegyenlet linearitása - Na ez egy határozottan jó tulajdonság, ami megkönnyíti az életünket.
- A differenciálegyenletek típusai - Készítünk egy listát a főbb típusokról, majd elkezdjük sorra venni a megoldási módszereket.
- Szeparábilis differenciálegyenlet - A legegyszerűbb típus, amin érdemes gyakorlatozni, hogy a bonyolultabb típusok megoldása előtt legyen egy kis rutin.
- Elsőrendű lineáris differenciálegyenlet - Az egyik legfontosabb típus az y'+Py=Q alakú differenciálegyenlet, amelyre egy részletes megoldási tervet adunk.
- A v(x) függvény - Az y'+Py=Q alakú elsőrendű lineáris differenciálegyenlet egyik megoldási módszerében szereplő függvény.
- Lagrange szorzó - Az elsőrendű lineáris differenciálegyenlet egyik megoldási módszerében szereplő v(x) függvény.
- Elsőrendű állandó együtthatós lineáris differenciálegyenlet - Egy speciális típus az y'+ay=Q alakú differenciálegyenlet, amelyet a próbafüggvéyn módszerrel oldunk meg.
- A próbafüggvény módszer - Egy olyan megoldási módszer, ahol a homogén egyenlet megoldása után a partikuláris megoldást határozatlan együtthatókkal keressük.
- Rezonancia elsőrendű egyenleteknél - Ez olyankor van, ha a homogén megoldás és a partikuláris megoldás hasonlít egymásra. Lássuk mit is jelent ez...
- Homogén egyenlet - Azokat az egyenleteket nevezzük homogénnek, ahol nincs az ismeretlen függvényt tartalmazótól különböző tag. y"+ay'+by=0 alakú esetekkel fogunk foglalkozni.
- Homogén megoldás - A homogén egyenlet megoldása.
- Parikuláris megoldás - Az úgynevezett zavaró függvény alapján létrejövő megoldás, amit például a próbafüggvény módszer segítségével kaphatunk meg.
- Másodrendű állandó együtthatós lineáris differenciálegyenlet - Egy speciális típus az y"+ay'+by=Q alakú differenciálegyenlet, amelyet a próbafüggvéyn módszerrel oldunk meg.
- Rezonancia másodrendű egyenleteknél - Ez olyankor van, ha a homogén megoldás és a partikuláris megoldás hasonlít egymásra. Lássuk mit is jelent ez...
KOMBINATORIKA
- Permutáció - Egy n elemű halmaz permutációinak száma n!
- Variáció - n elem k-ad osztályú variációja azt mondja meg, hogy n elemből hányféleképpen lehet k darabot kiválasztani úgy, ha számít a kiválasztás sorrendje.
- Kombináció - n elem k-ad osztályú kombinációja azt mondja meg, hogy n elemből hányféleképpen lehet k darabot kiválasztani úgy, ha nem számít a kiválasztás sorrendje.
ESEMÉNYEK ÉS VALÓSZÍNŰSÉGEK
- Események - Mik azok az események? Műveletek eseményekkel, eseményalgebra és egyéb izgalmak..
- Független események - Mikor mondjuk, hogy két esemény egymástól független? Példák független eseményekre.
- Kizáró események - Mikor kizáró két esemény? Példák kizáró eseményekre.
- Feltételes Valószínűség - A feltételes valószínűség. Az A feltéva B valószínűség azt jelenti, hogy mekkora eséllyel következik be az A esemény, ha a B esemény biztosan bekövetkezik..
- Teljes valószínűség tétele - A teljes valószínűség tétele azt mondja ki, hogy ha ismerjük egy A esemény feltételes valószínűségét egy teljes eseményrendszer valamennyi eseményére, akkor ebből az A esemény valószínűsége kiszámítható.
- Bayes-tétel - Olyankor használjuk, ha egy korábban bekövetkezett Bk esemény valószínűségére vagyunk kiváncsiak egy később bekövetkezett A esemény tükrében.
ELOSZLÁSFÜGGVÉNY ÉS SŰRŰSÉGFÜGGVÉNY
- Valószínűségi változó - A valószínűségi változó eseményekhez rendel hozzá valós számokat. Nézzük meg, hogyan.
- Eloszlásfüggvény - Az X valószínűségi változó eloszlásfüggvénye F(x). F(x)=P(x<X) Vagyis minden x számhoz hozzárendeli annak a valószínűségét, hogy X<x. Nos ez elég izgi..
- Sűrűségfüggvény - A sűrűségfüggvény a görbe alatti területekkel írja le egy esemény valószínűségét.
- Hogyan lesz eloszlásfüggvényből sűrűségfüggvény - A sűrűségfüggvény az eloszlásfüggvény deriváltja.
- Hogyan lesz sűrűségfüggvényből eloszlásfüggvény - Nos nagyon kalandos körülmények között...
VÁRHATÓ ÉRTÉK ÉS SZÓRÁS
- Várható érték - A valószínűségi változó értékeinek valószínűséggekkel súlyozott átlaga. De valójában ez rémegyszerű, nézzünk rá néhány példát.
- Szórás - A várható értéktől való átlagos eltérést írja le a szórás.
- Markov egyenlőtlenség - A Markov egyenlőtlenség arról szól, hogy az X valószínűségi változó a várható értéknél nem lehet sokkal nagyobb.
- Csebisev egyenlőtlenség - A Csebisev egyenlőtlenség azt írja le, hogy az X valószínűségi változó várható értéktől való eltérése nem lehet túl nagy.
NEVEZETES DISZKRÉT ÉS FOLYTONOS ELOSZLÁSOK
- Binomiális eloszlás - A binomiális eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a valószínűsége p és egymástól függetlenül elvégzünk n darab kísérletet, ahol a kísérletek mindegyikében az esemény vagy bekövetkezik vagy nem. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
- Hipergeometriai eloszlás - A hipergeometriai eloszlás egy diszkrét eloszlás, ahol N darab elem közül kiválasztunk n darab elemet visszatevés nélkül. Az összes elem között K darab selejtes található. Az eloszlás annak valószínűségét írja le, hogy a kiválasztott elemek között éppen k darab selejte van.
- Poisson-eloszlás - A Poisson eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a várható előfordulása lambda darab. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
- Egyenletes eloszlás - Ez egy folytonos eloszlás, ahol egy esemény bekövetkezésének valószínűsége valamely intervallumon konstans.
- Exponenciális eloszlás - Az eltelt idők és a távolságok eloszlása.
- Normális eloszlás - Mennyiségek eloszlása.
- A Poisson eloszlás és az exponenciális eloszlás kapcsolata - A két eloszlás lényegében ugyanazt írja le, csak az egyik a bekeövetkezések számával, míg a másik a bekövetkezések közt eltelt idővel teszi ezt.
- Az örökifjú tulajdonság - Örökifjúnak lenni marhajó dolog. Az exponenciális eloszlásnak ez megadatik...
KÉTVÁLTOZÓS VALÓSZÍNŰSÉGI ELOSZLÁSOK
- Együttes eloszlás - Két valószínűségi változó együttes eloszlása és eloszlástáblázata.
- Peremeloszlás - Két valószínűségi változó perem eloszlásainak kiszámolása.
- Várható érték - Két valószínűségi változó várhatóértékeinek kiszámolása.
- Szorzat várható értéke - A szorzat várható értékének kiszámítása az együttes eloszlás táblázatából.
- Kovariancia - Két valószínűségi változó kovarianciájának kiszámolása.
- Korreláció - Két valószínűségi változó korrelációjának kiszámolása.
- Peremeloszlás-függvény - Két valószínűségi változó peremeloszlás-függvényeinek felírása.
- Együttes eloszlásfüggvény - Két valószínűségi változó együttes eloszlásfüggvényeinek felírása.
Deriválás
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
Konstans deriváltja, polinomok deriválási szabálya. Az exponenciális és logaritmus függvények deriválása. Trigonometrikus függvények deriváltjai.
- -
Függvény konstansszorosának, két függvény összegének, szorzatának és hányadosának deriválási szabályai. Összetett függvények deriválási szabálya.
- -
A lánc-szabály az összetett függvények deriválási szabálya.
- -
A sinh és cosh hiperbolikus függvények közt fennálló azonosságok.
- -
A cosh, sinh és tanh függvények deriváltjai.
- -
A cosh, sinh és tanh függvények inverzfüggvényei.
- -
Az arcosh, arsinh és artanh függvények deriváltjai.
Függvények érintőjének egyenlete
- -
A függvény érintője egy olyan egyenes, amely egy függvényt pontosan egy pontban érint.
Parciális deriválás, kétváltozós függvények
- -
A kétváltozós függvények úgy működnek, hogy két valós számhoz rendelnek hozzá egy harmadik valós számot.
- -
A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.
- -
A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
- -
Egy általános módszer, amivel kétváltozós függvények szélsőértékeit és nyeregpontjait lehet meghatározni
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- -
másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen nyeregpontja van-e.
- -
A sík azon pontjainak összességét, amelyekben az $f$ függvény ugyanazt a konstans értéket veszi fel, az $f$ függvény szintvonalának nevezzük.
- -
Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ez esetben most egy sík lesz az érintő.
- -
A parciális deriváltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
- -
Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.
- -
Egy függvény akkor implicit, ha $y$ nincs kifejezve, vagyis nem $y=\dots$ alakú.
- -
Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.
Határozatlan és határozott integrálás
- -
Az f(x) függvény primitív függvényének jele F(x) és azt tudja, hogy ha deriváljuk, akkor visszakapjuk f(x)-et. Egy függvény primitív függvényeinek halmazát nevezzük a függvény határozatlan integráljának.
- -
Polinomok integrálása. Törtfüggvény integrálása. Exponenciális függvények integrálása. Trigonometrikus függvények integrálása.
- -
Polinomok, törtfüggvény, exponenciális függvények, trigonometrikus függvények integráljainak lineáris helyettesítései.
- -
Integráláskor a konstans szorzó kivihető.
- -
Összeget külön-külön is integrálhatunk.
- -
Ha a szorzás elvégezhető, akkor végezzük el, és utána integráljunk.
- -
Szorzat integrálásának egy speciális esete, amikor a függvény n-edik hatványon van és meg van szorozva a deriváltjával.
- -
Összetett függvényeket általában akkor tudunk integrálni, ha azok meg vannak szorozva a belső függvényük deriváltjával. Van is erre egy remek kis képlet.
- -
Próbálkozzunk a tört földarabolásával és utána integráljunk.
- -
Törtek integrálásának egy speciális esete, amikor a tört számlálója a nevező deriváltja.
- -
A Newton-Leibniz formula egy egyszerűen használható képlet a határozott integrál kiszámításához. Ez a tétel az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
- -
Végtelenbe nyúló tartományok területének kiszámolása egy fontos függvénnyel.
Eloszlás, eloszlásfüggvény, sűrűségfüggvény
- -
Folytonosnak nevezzük azokat a valószínűségi változókat, amik folytonos mennyiségeket mérnek, ilyen például az idő, a távolság.
- -
Diszkrétnek nevezzük azokat a valószínűségi változókat, amik megszámlálhatóan sok értéket vesznek fel.
- -
Az X valószínűségi változó eloszlásfüggvénye F(x). F(x)=P(x<X) Vagyis minden x számhoz hozzárendeli annak a valószínűségét, hogy X<x. Nos ez elég izgi..
- -
A sűrűségfüggvény a görbe alatti területekkel írja le egy esemény valószínűségét.
- -
Az eloszlásfüggvény határértéke minusz végtelenben 0, plusz végtelenben 1, monoton nő és balról folytonos.
- -
A sűrűségfüggvény integrálja minusz végtelentől plusz végtelenig 1, és nem negatív.
- -
Három nagyon fontos összefüggés eloszlásfüggvény és sűrűségfüggvény között.
- -
Az $X$ valószínűségi változó $F(x)$ eloszlásfüggvényéből úgy kapjuk meg az $f(x)$ sűrűségfüggvényét, hogy az $F(x)$ eloszlásfüggvényt deriváljuk. Fordítva pedig integrálni kell.
Várható érték és szórás
- -
A valószínűségi változó értékeinek valószínűségekkel súlyozott átlaga. De valójában ez rém egyszerű, nézzünk rá néhány példát.
- -
A szórás azt mutatja meg, hogy a várható érték körül milyen nagy ingadozásra számíthatunk.
- -
Folytonos valószínűségi változók esetén a várható értéket egy integrálás segítségével számítjuk.
- -
Folytonos valószínűségi változó esetén a szórást ugyanúgy kell számolni, mint diszkrét valószínűségi változó esetén:
Markov és Csebisev egyenlőtlenségek
- -
A Markov egyenlőtlenség arról szól, hogy az X valószínűségi változó a várható értéknél nem lehet sokkal nagyobb.
- -
A Csebisev egyenlőtlenség azt írja le, hogy az X valószínűségi változó várható értéktől való eltérése nem lehet túl nagy.
- -
Ha egy esemény bekövetkezésének elméleti valószínűsége $p$, akkor minél többször végezzük el a kísérletet, a relatív gyakoriság és az elméleti valószínűség eltérése annál kisebb lesz.
Nevezetes diszkrét és folytonos eloszlások
- -
A hipergeometriai eloszlás egy diszkrét eloszlás, ahol N darab elem közül kiválasztunk n darab elemet visszatevés nélkül. Az összes elem között K darab selejtes található. Az eloszlás annak valószínűségét írja le, hogy a kiválasztott elemek között éppen k darab selejtes van.
- -
A binomiális eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a valószínűsége p és egymástól függetlenül elvégzünk n darab kísérletet, ahol a kísérletek mindegyikében az esemény vagy bekövetkezik vagy nem. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
- -
A Poisson eloszlás egy diszkrét eloszlás, ahol egy esemény bekövetkezésének a várható előfordulása lambda darab. Az eloszlás annak valószínűségét írja le, hogy az esemény éppen k-szor következik be.
- -
Az eltelt idők és a távolságok eloszlása.
- -
- -
Mennyiségek eloszlása.