- Algebra, nevezetes azonosságok
- Másodfokú egyenletek
- Egyenlőtlenségek
- Egyenletrendszerek
- Abszolútértékes egyenletek, egyenlőtlenségek
- Exponenciális egyenletek
- Logaritmikus egyenletek
- Gyökös egyenletek
- Trigonometrikus egyenletek
- Halmazok
- Gráfok
- Teljes indukció
- Komplex számok
- Mátrixok és vektorok
- Lineáris függetlenség, bázis, rang
- Lineáris egyenletrendszerek, mátrix inverze
- Determináns, sajátérték, sajátvektor
- Vektorok
- Függvények ábrázolása
- Inverz függvények
- Koordinátageometria
- Polinomok
- Feladatok függvényekkel
- Százalékszámítás és pénzügyi számítások
- Számelmélet
- Szöveges feladatok
- Síkgeometria
- Középpontos hasonlóság
- Trigonometria
- Szinusztétel, Koszinusztétel
- Térgeometria
- A parabola
- Számtani és mértani sorozatok
- Kombinatorika
- Valószínűségszámítás
- Statisztika
Feladatok függvényekkel
Trigonometrikus függvények
Trigonometrikus függvényeknek vagy szögfüggvényeknek nevezzük azokat a függvényeket, amelyek tartalmaznak trigonometrikus kifejezéseket, mint például szinusz, koszinusz vagy tangens. Ezek eredetileg egy derékszögű háromszög egy szöge és két oldala hányadosa közti összefüggéseket írja le.
Másodfokú függvény
Ha a másodfokú függvény hozzárendelési szabálya: $f_i = a_i \cdot x^2 + b_i$, akkor itt az $a_i$-t főegyütthatónak hívjuk és eléggé lényeges dolgok függnek tőle.
Hogyha $a$ negatív, akkor a függvény grafikonja egy lefelé nyíló parabola, ha pozitív, akkor felfelé nyíló. És minél nagyobb az $a$ szám, a parabola annál keskenyebb.
A $b$ az annyit tud, hogy hol metszi a függvény grafikonja az $y$ tengelyt.
A témakör tartalma
Függvényekkel kapcsolatos szöveges feladatok
Újabb függvényes izgalmak
Trigonometrikus függvények ábrázolása
Még néhány trigonometrikus függvény
Újabb trigonometrikus függvények
Másodfokú függvények viselkedésével kapcsolatos feladatok
FELADAT | Szöveges feladat függvényekkel
FELADAT | Szöveges feladat függvényekkel
FELADAT | Szöveges feladat függvényekkel