- Algebra, nevezetes azonosságok
- Másodfokú egyenletek
- Elsőfokú és másodfokú egyenlőtlenségek
- Gyökös azonosságok és gyökös egyenletek
- Exponenciális egyenletek és egyenlőtlenségek
- Logaritmikus egyenletek és egyenlőtlenségek
- Trigonometrikus egyenletek és egyenlőtlenségek
- Nagyságrend-őrző becslések
- Halmazok
- Kijelentések, kvantorok, logikai állítások
- Teljes indukció
- Komplex számok
- Mátrixok és vektorok
- Lineáris függetlenség, bázis, rang
- Lineáris egyenletrendszerek, mátrix inverze
- Determináns, adjungált, kvadratikus alakok
- Sajátérték, sajátvektor, diagonalizálás
- Ortogonális mátrixok, Fourier-együtthatók, Gram-Schmidt ortogonalizáció
- Függvények ábrázolása
- Összetett függvény, értékkészlet, értelmezési tartomány
- Inverz függvények
- Egyenletrendszerek
- Abszolútértékes egyenletek, egyenlőtlenségek
- Gráfok
- Vektorok
- Koordinátageometria
- Polinomok
- Feladatok függvényekkel
- Százalékszámítás és pénzügyi számítások
- Számelmélet
- Szöveges feladatok
- Síkgeometria
- Középpontos hasonlóság
- Trigonometria
- Szinusztétel, Koszinusztétel
- Térgeometria
- A parabola
- Számtani és mértani sorozatok
- Kombinatorika
- Valószínűségszámítás
- Statisztika
Feladatok függvényekkel
Trigonometrikus függvények
Trigonometrikus függvényeknek vagy szögfüggvényeknek nevezzük azokat a függvényeket, amelyek tartalmaznak trigonometrikus kifejezéseket, mint például szinusz, koszinusz vagy tangens. Ezek eredetileg egy derékszögű háromszög egy szöge és két oldala hányadosa közti összefüggéseket írja le.
Másodfokú függvény
Ha a másodfokú függvény hozzárendelési szabálya: $f_i = a_i \cdot x^2 + b_i$, akkor itt az $a_i$-t főegyütthatónak hívjuk és eléggé lényeges dolgok függnek tőle.
Hogyha $a$ negatív, akkor a függvény grafikonja egy lefelé nyíló parabola, ha pozitív, akkor felfelé nyíló. És minél nagyobb az $a$ szám, a parabola annál keskenyebb.
A $b$ az annyit tud, hogy hol metszi a függvény grafikonja az $y$ tengelyt.
Ábrázoljuk az alábbi függvényeket.
a) \( f(x)=2 \sin{x} \)
b) \( f(x)=\sin{(2x)} \)
c) \( f(x)=\cos{(3x)} \)
d) \( f(x)=2\cos{(3x)} \)
e) \( f(x)=\frac{5}{3} \cos{\frac{x}{2}} \)
Ábrázoljuk az
$f(x)=\frac{5}{2} \cos{(4x)}$,
$f(x)=2\cos{ \left( \frac{x}{2} \right)}$,
$f(x)=\frac{1}{2} \cos{(3x)}+1$,
$f(x)=2\sin{ \frac{x}{2}}$
függvényeket.
Ábrázoljuk az
$f(x)=\frac{5}{2} \sin{(4x)}$,
$f(x)=\frac{3}{2}\sin{(4x)}+1$,
$f(x)=-2\sin{(4x)}$,
$f(x)=-\frac{3}{2}\sin{(-4x)}$,
$f(x)=\frac{1}{2}\cos{(-3x)}$
függvényeket.