Matematika alapok
- Algebra, nevezetes azonosságok
- Másodfokú egyenletek
- Egyenlőtlenségek
- Egyenletrendszerek
- Abszolútértékes egyenletek, egyenlőtlenségek
- Exponenciális egyenletek
- Logaritmikus egyenletek
- Gyökös egyenletek
- Trigonometrikus egyenletek
- Halmazok
- Gráfok
- Teljes indukció
- Komplex számok
- Mátrixok és vektorok
- Lineáris függetlenség, bázis, rang
- Lineáris egyenletrendszerek, mátrix inverze
- Determináns, sajátérték, sajátvektor
- Vektorok
- Függvények ábrázolása
- Inverz függvények
- Koordinátageometria
- Polinomok
- Feladatok függvényekkel
- Százalékszámítás és pénzügyi számítások
- Számelmélet
- Szöveges feladatok
- Síkgeometria
- Középpontos hasonlóság
- Trigonometria
- Szinusztétel, Koszinusztétel
- Térgeometria
- A parabola
- Számtani és mértani sorozatok
- Kombinatorika
- Valószínűségszámítás
- Statisztika
Másodfokú egyenletek
1. Oldd meg az alábbi egyenleteket.
a) \( \frac{2x+1}{7} + x -2 = \frac{x+5}{4} \)
b) \( \frac{x+2}{x-5}=3 \)
c) \( \frac{x}{x+2} +3 = \frac{4x+1}{x} \)
Megnézem, hogyan kell megoldani
2. Oldd meg az alábbi egyenleteket.
a) \( 3x^2-14x+8=0 \)
b) \( -2x^2+5x-3=0 \)
c) \( 4x + \frac{9}{x}=12 \)
Megnézem, hogyan kell megoldani
3. Oldd meg az alábbi egyenleteket.
a) \( x^2+17x+16=0 \)
b) \( x^2+7x+12=0 \)
c) \( x^2-10x+20=0 \)
d) \( x^2-6x-16=0 \)
e) \( 3x^2-12x-15=0 \)
f) \( 4x^2+11x-3=0 \)
Megnézem, hogyan kell megoldani
4. Alakítsd szorzattá.
a) \( x^2-6x-16=0 \)
b) \( x^2-7x+12=0 \)
c) \( 3x^2-14x+8=0 \)
Megnézem, hogyan kell megoldani
5. Milyen \( A \) paraméter esetén van egy darab megoldása az egyenletnek?
a) \( x^2+2x+A=0 \)
b) \( x^2-Ax-3=0 \)
c) \( Ax^2+4x+1=0 \)
Megnézem, hogyan kell megoldani
6. Oldd meg az alábbi egyenleteket.
a) \( x^6-9x^3+8=0 \)
b) \( 4x^5-9x^4-63x^3=0 \)
c) \( x^9-7x^6-8x^3=0 \)
Megnézem, hogyan kell megoldani
7. Oldd meg az alábbi egyenleteket.
a) \( \frac{16}{x-4}=3x-20 \)
b) \( \frac{x}{x+4}=\frac{32}{(x+4)(x-4)} \)
c) \( \frac{x-3}{x+3}+\frac{x+3}{x-3}=\frac{26}{x^2-9} \)
Megnézem, hogyan kell megoldani
8.
a) A $p$ paraméter mely értéke esetén lesz az alábbi egyenletnek gyöke a -2 és a 6?
\( x^2+p \cdot x - 12 = 0 \)
b) Milyen $p$ paraméter esetén lesz két különböző pozitív valós megoldása ennek az egyenletnek
\( x^2 + p \cdot x + 1 = 0 \)
c) Milyen $p$ paraméterre lesz az egyenletnek pontosan egy megoldása?
\( \frac{x}{x-2} = \frac{p}{x^2-4} \)
Megnézem, hogyan kell megoldani
9. Oldjuk meg ezt az egyenletet:
\( \frac{x}{x+2}=\frac{8}{x^2-4} \)
Megnézem, hogyan kell megoldani
10. Oldjuk meg ezt az egyenletet:
\( \frac{2x+9}{x+1}-2=\frac{7}{9x+11} \)
Megnézem, hogyan kell megoldani
11. Oldjuk meg ezt az egyenletet:
\( \frac{x+1}{x-9}-\frac{8}{x-5}=\frac{4x+4}{x^2-14x+45} \)
Megnézem, hogyan kell megoldani
12. Oldjuk meg ezt az egyenletet:
\( \frac{1}{x-3}+\frac{2}{x+3}=\frac{3}{x^2-9} \)
Megnézem, hogyan kell megoldani
13. Oldjuk meg ezt az egyenletet:
\( \frac{x-2}{x+2}+\frac{x+2}{x-2}=\frac{10}{x^2-4} \)
Megnézem, hogyan kell megoldani
14. Oldjuk meg ezt az egyenletet:
\( \frac{3}{x}-\frac{2}{x+2}=1 \)