Jump to navigation

Belépés
  • Elfelejtettem a jelszavam
Regisztráció

mateking

  • Nyitólap
  • Tantárgyak
  • Matek érettségi
  • FAQ
  • Rólunk
Login
  • Középiskolai matek  
  • Analízis 1  
  • Analízis 2  
  • Analízis 3  
  • Lineáris algebra  
  • Valószínűségszámítás  
  • Diszkrét matematika  
  • Statisztika  
 

Matematika alapok

  • Algebra, nevezetes azonosságok
  • Másodfokú egyenletek
  • Egyenlőtlenségek
  • Egyenletrendszerek
  • Abszolútértékes egyenletek, egyenlőtlenségek
  • Exponenciális egyenletek
  • Logaritmikus egyenletek
  • Gyökös egyenletek
  • Trigonometrikus egyenletek
  • Halmazok
  • Gráfok
  • Teljes indukció
  • Komplex számok
  • Mátrixok és vektorok
  • Lineáris függetlenség, bázis, rang
  • Lineáris egyenletrendszerek, mátrix inverze
  • Determináns, sajátérték, sajátvektor
  • Vektorok
  • Függvények ábrázolása
  • Függvények és inverz függvények
  • Koordinátageometria
  • Polinomok
  • Feladatok függvényekkel
  • Százalékszámítás és pénzügyi számítások
  • Számelmélet
  • Szöveges feladatok
  • Síkgeometria
  • Középpontos hasonlóság
  • Trigonometria
  • Szinusztétel, Koszinusztétel
  • Térgeometria
  • A parabola
  • Számtani és mértani sorozatok
  • Kombinatorika
  • Valószínűségszámítás
  • Statisztika

Térgeometria

  • Epizódok
  • Feladatok
01
 
Gúlák, hasábok, kúpok, hengerek, térfogat és felszín
02
 
FELADAT | kockák és tetraéderek
03
 
FELADAT | Gúlák, oldallapok és oldalélek hajlásszöge
04
 
FELADAT | Csonkagúla
05
 
FELADAT | Gúla térfogata
06
 
FELADAT | Gúlák összeragasztása
07
 
FELADAT | Kocka megforgatása 1.0
08
 
FELADAT | Kocka megforgatása 2.0
09
 
FELADAT | Téglatest lapátlók
10
 
FELADAT | Térgeometria

1. Az egyiptomi Nagy Piramis 147 m magas és a piramis lábánál 232 m hosszú. Számoljuk ki, hogy hány köbméter szikla kellett a felépítéséhez, mekkora a piramis felülete és milyen meredek az oldala.

Megnézem, hogyan kell megoldani


2. Egy kocka élének hossza \( a=12 \) cm. Az ábrán látható módon berajzoljuk 3 lapátlóját és az így keletkező tetraédert levágjuk a kockából. Mekkora az így megmaradt test térfogata és felszíne?

Megnézem, hogyan kell megoldani


3. Egy szabályos négyoldalú gúla oldallapja 50°-os szöget zár be az alappal. A gúla alapja 36 \( cm^2 \). Mekkora a gúla térfogata, és mekkora az oldalélek hajlásszöge az alappal?

Megnézem, hogyan kell megoldani


4. Egy üvegből készült szabályos négyoldalú gúla alapja 20 cm hosszú, az alaplap az oldallapokkal 60°-os szöget zár be. Egy lyukon keresztül vizet lehet tölteni a gúlába. 1l víz térfogata 1 \( dm^3\).

a) Hány liter vizet kell beletöltenünk ahhoz, hogy a víz éppen a gúla magasságának a feléig érjen?

b) Milyen magasan áll a víz akkor, amikor éppen a gúla térfogatának felét töltjük fel vízzel?

Megnézem, hogyan kell megoldani


5. Adott egy négyzetalapú gúla, melynek alapéle 6 cm, oldaléle 5 cm hosszúságú. Számítsuk ki a gúla térfogatát és felszínét!

Megnézem, hogyan kell megoldani


6. Két egybevágó, szabályos négyoldalú gúla alapélei 2 cm, oldalélei 3 cm hosszúak. A két gúlát az alapjuknál összeragasztjuk. Mekkora ennek a testnek a térfogata és felszíne?

Megnézem, hogyan kell megoldani


7. Egy 10 cm oldalhosszúságú négyzetet megforgatunk a középvonala körül. Mekkora az így létrejövő test térfogata és felszíne?

Megnézem, hogyan kell megoldani


8. Egy 10 cm oldalhosszúságú négyzetet megforgatunk az átlója körül. Mekkora az így létrejövő test térfogata és felszíne?

Megnézem, hogyan kell megoldani


9. Egy téglatest alakú akvárium egy csúcsból kiinduló éle 30 cm, 40 cm, illetve 50 cm hosszúak. Hány literes ez az akvárium?

Megnézem, hogyan kell megoldani


10. Egy parkbeli szökőkút medencéjének alakja szabályos hatszög alapú egyenes hasáb. A szabályos hatszög egy oldala 2,4 m hosszú, a medence mélysége 0,4 m. A medence alját és oldalait csempével burkolták, majd a medencét teljesen feltöltötték vízzel. Hány \( m^2 \) területű a csempével burkolt felület, és legfeljebb hány liter víz fér el a medencében?

Megnézem, hogyan kell megoldani

A témakör tartalma


Gúlák, hasábok, kúpok, hengerek, térfogat és felszín

FELADAT | kockák és tetraéderek

FELADAT | Gúlák, oldallapok és oldalélek hajlásszöge

FELADAT | Csonkagúla

FELADAT | Gúla térfogata

FELADAT | Gúlák összeragasztása

FELADAT | Kocka megforgatása 1.0

FELADAT | Kocka megforgatása 2.0

FELADAT | Téglatest lapátlók

FELADAT | Térgeometria

Kontakt
  • Segítségnyújtás
  • Hibabejelentés
  • Kapcsolatfelvétel
  • Mateking torrent bejelentés
Rólunk
  • A projektről
  • Médiamegjelenések
  • Események
  • Mire jó a matek?
Tartalomjegyzék
  • Középiskolai matek
  • Analízis 1
  • Analízis 2
  • Analízis 3
  • Lineáris algebra
  • Valószínűségszámítás
  • Diszkrét matematika
  • Statisztika
  • További tantárgyak
  • Egyetemi tematikák
  • Matek érettségi
GYIK Felhasználási feltételek Adatvédelmi irányelvek Felhasználás oktatóknak

Cookie-használat módosítása

© Minden jog fenntartva!

Az oldalon található tartalmak részének vagy egészének másolása, elektronikus úton történő tárolása vagy továbbítása, harmadik fél számára nyújtott oktatási célra való hasznosítása kizárólag az üzemeltető írásos engedélyével történhet. Ennek hiányában a felsorolt tevékenységek űzése büntetést von maga után!

barion
macroweb
  • Tantárgyaim