- Bevezető
- Kombinatorika
- Elemi valószínűségszámítás és eseményalgebra
- Teljes valószínűség tétele és Bayes tétel
- Mintavételek típusai
- Valószínűségi változó, várható érték, szórás
- Lineáris algebra
- Markov láncok
- Függvények
- Deriválás
- Függvényvizsgálat & szélsőérték-feladatok
- Nagy számok törvénye, centrális határeloszlástétel
- Normális eloszlás
- Többváltozós deriválás
- Integrálás
Deriválás
Deriválási szabályok
$f$ és $g$ deriválható függvények, és $c$ valós szám esetén a deriválási szabályok:
\( (cf)' = cf' \quad \left( \frac{f}{c} \right)' = \frac{f'}{c} \)
\( (f+g)' = f' + g' \)
\( (fg)' = f'g + fg' \)
\( \left( \frac{f}{g} \right)' = \frac{ f'g - fg'}{g^2} \)
\( \left( \frac{c}{f} \right)' = \frac{-cf'}{f^2} \)
\( \left( f \left( g(x) \right) \right)' = f' \left( g(x) \right) g'(x) \)
Differenciahányados
Egy szelő egyenes meredeksége a differenciahányados:
\( \frac{ f(x) - f(x_0) }{ x -x_0} \)
Differenciálhányados
Egy függvény érintő egyenesének meredeksége a differenciálhányados:
\( m= \lim_{x \to x_0}{ \frac{ f(x)-f(x_0)}{x-x_0}} \)
Ezt nevezzük a függvény $x_0$ pontban vett deriváltjának is.
Nevezetes függvények deriváltjai
\( (c)'=0 \quad \left( x^n \right)' = n x^{n-1} \quad \left( e^x \right)' = e^x \quad \left( a^x \right)' = a^x \ln{a} \)
\( ( \ln{x} )' = \frac{1}{x} \quad ( \log_a{x} )' = \frac{1}{x} \frac{1}{\ln{a}} \quad ( \sin{x} )' = \cos{x} \quad ( \cos{x} )' = - \sin{x} \)
\( ( \tan{x} )' = \frac{1}{\cos^2{x} } \quad ( \arcsin{x} )' = \frac{1}{\sqrt{1-x^2}} \quad ( \arccos{x} )' = \frac{-1}{\sqrt{1-x^2}} \quad (\arctan{x})' = \frac{1}{1+x^2} \)
Differenciahányados
Egy szelő egyenes meredeksége a differenciahányados:
\( \frac{ f(x) - f(x_0) }{ x -x_0} \)
Differenciálhányados
Egy függvény érintő egyenesének meredeksége a differenciálhányados:
\( m= \lim_{x \to x_0}{ \frac{ f(x)-f(x_0)}{x-x_0}} \)
Ezt nevezzük a függvény $x_0$ pontban vett deriváltjának is.
Az érintő egyenlete
A derivált geometriai jelentése a függvény grafikonjához húzott érintő meredeksége.
Az érintő egyenlete:
\( f(x) = f'(x_0) (x-x_0) + f(x_0) \)
Deriváljuk az alábbi függvényeket.
a) \( \left( 5\cdot x^3 \right)' = \; ? \)
b) \( \left( \frac{x^5}{7} \right)' = \; ? \)
c) \( \left( x^2+\ln{x} \right)' = \; ? \)
d) \( \left( x^3 \cdot \ln{x} \right)' = \; ? \)
e) \( \left( \frac{x^2}{\ln{x}} \right)' = \; ? \)
f) \( \left( \frac{5}{x^3+2} \right)' = \; ? \)
Deriváljuk az alábbi függvényeket.
a) \( \left( \sin{ \left( x^6+x^2 \right)} \right)' = \; ? \)
b) \( \left( \left( 3^x +\ln{x} \right)^4 \right)' = \; ? \)
c) \( \left( 5^{x^3+x} \right)' = \; ? \)
d) \( \left( \ln{\left( x^4+x^2 \right)} \right)' = \; ? \)
Oldjuk meg az alábbi feladatokat:
a) Mi lesz az \( f(x)=x^2+5x-7 \) függvények a deriváltja az \( x_0=2 \)-ben?
b) Mi lesz az \( f(x)=x^3+2x^2-3x-1 \) függvények a deriváltja az \( x_0=1 \)-ben?
c) Mi lesz az \( f(x)=-4x^2+5x \) függvények a deriváltja az \( x_0=-3 \)-ban?
Oldjuk meg az alábbi feladatokat:
a) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=2x^3+1 \) függvényt az \( y_0=55 \) pontban érinti.
b) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=x^2-x+4 \) függvényt egy olyan pontban érinti, aminek \( x \) koordinátája negatív, \( y \) koordinátája 24.
c) Keressük annak az érintőnek az egyenletét, amely érinti az \( f(x)=x^4+5x+12 \) függvényt és párhuzamos az \( y=-27x+1 \) egyenessel.
d) Keressük annak az érintőnek az egyenletét, ami az \( f(x)=2e^{x-4}+5 \) függvényt az \( y_0=7 \) pontban érinti.
Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.
\( f(x)=x^4 - 4x^3 \)
Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.
\( f(x)=x^3 - 3x \)
a) Egy részvény árfolyamának napi alakulását az alábbi függvény adja meg reggel nyolc és este hat óra között, ahol a nap x-edik órájában az árfolyam ezer dollárba megadva
\( f(x)=(x-12)^2 e^{ - \frac{x}{2} }+10 \qquad 8 \leq x \leq 18 \)
Mekkora volt a nyitási és zárási árfolyam? A nap melyik órájában volt az árfolyam minimális, illetve maximális?
b) Egy termék keresleti függvénye
\( f(x)=10^6 \frac{1}{100+x^2} \)
ahol x termék egységárát jelöli. Milyen egységár esetén maximális az árbevétel?
c) Egy termék fajlagos nyeresége dollárban megadva
\( \pi (x) = e^{ \frac{-x^2}{2} + 2 } \)
ahol x a hetente eladott mennyiséget jelenti 1000 darabban.
Milyen eladási szám esetén optimális a heti teljes nyereség?
Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.
\( f(x)=4xe^{6-x} \)
Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.
\( f(x)=\frac{2x}{(3+x)^2} \)
Végezzük el a teljes függvényvizsgálatát az alábbi függvénynek.
\( f(x)=x\cdot e^{ \frac{-1}{x} } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ 3x }{ (4-x)^2 } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ 3x }{ \sqrt{ e^x +1 } } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ \lg{3x} + e^2 }{ \sqrt[3]{ 4-x } } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ e^{4x} - \sqrt[7]{x^4} }{ \ln{ (4-2x)} +7 } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \left( x^5-4^x \right) \left( \ln{x} - \sqrt[6]{x^7} \right) \)
Deriváljuk az alábbi függvényt.
\( f(x)= \ln{ \frac{ x^5 - 2^x }{ \sqrt[4]{x-6} +e^2} } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \ln{ \sqrt[3]{ \frac{ x^4 - e^x}{5^{2x-4} -\ln{ \pi} }} } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ e^{4x}- \sqrt[7]{x^4} }{ \ln{(4-2x)} +7} \)
Deriváljuk az alábbi függvényt.
\( f(x)= \left( \frac{5^x+\ln{x}}{ \sqrt{1-x} + x^6} \right)^4 \)
Deriváljuk az alábbi függvényt.
\( f(x)= \sqrt[5]{ \left( \ln{x} -5^{6-2x} + (4x+5)^3 -x \right)^4 } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{1}{ \sqrt[4]{ \left( x^5 - \ln{ \left( x^3+x \right) } - 6^{3-x} + \sqrt{\pi} \right)^7 }} \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{5}{ \sqrt[3]{ 6x^5 - \lg{ ( 3-2x) } - 2^{4-x} }} \)
Deriváljuk az alábbi függvényt.
\( f(x)= \lg{ \frac{7 x^4 + 2^x }{ \sqrt{3} + \sqrt[4]{x} }} \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ 7^{2x+3} -4x^3}{5 \ln{x} + \sqrt[4]{x^7+x}} \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ \log_{\sqrt{3}}{x} + e^{8-5x} }{ 7+ \sqrt[3]{1+2x^4+x^8} } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \left( 5^x+ \lg{ \left( 9x^2-1 \right) } \right) \left( \sqrt[5]{ (6-x)^2} + 4e^x \right) \)
Deriváljuk az alábbi függvényt.
\( f(x)= \sqrt{ \frac{ 6^x + \lg{x} }{ \ln{2} + 3x^8} } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \sqrt[7]{5-3x} \cdot \left( e^{x^2+x} + 4\lg{x} \right) \)
Van itt egy függvény.
Ha néhány pontjában érintőt húzunk a függvényhez,
akkor az látszik, hogy ahol az érintő fölfelé megy, ott a függvény növekszik,
ahol az érintő lefelé megy, ott a függvény csökken.
Ott pedig, ahol az érintő vízszintesen megy, a függvénynek minimuma van,
de tulajdonképpen lehet maximuma is.
Mi az a deriválás, Deriváltak kiszámolása, Differencia hányados, Differenciál hányados, Alapderiváltak, Deriválási szabályok, Összeg deriváltja, Szorzat deriváltja, Hányados deriváltja, Összetett függvény deriváltja, A láncszabály, Deriválás feladatok megoldásokkal.
Az érintő tehát valahogy együtt mozog a függvénnyel, így ha ki tudjuk számolni a függvény érintőinek a meredekségét, akkor meg tudjuk mondani, hogy mit csinál
maga a függvény.
Számoljuk ki mondjuk ennek az érintőnek a meredekségét.
A meredekség azt jelenti, hogy ha egyet lépünk előre, akkor mennyit lépünk fölfelé.
A meredekség kiszámolásához segítségül hívunk egy másik pontot.
Először annak az egyenesnek számoljuk ki a meredekségét,
ami ezen a két ponton megy át.
Lássuk mekkora ennek az egyenesnek a meredeksége!
amennyit fölfele megy
amennyit előre megy
Ezt a meredekséget differencia hányadosnak nevezzük.
A szelő meredeksége a
differenciahányados:
Ez igazán remek, de eredetileg az érintő meredekségének kiszámolása volt a cél.
Nos úgy lesz ebből érintő, hogy -et elkezdjük közelíteni felé, és így a szelők egyre jobban közelítenek az érintőhöz.
Az érintő meredeksége tehát a szelők meredekségének a határértéke.
Ezt differenciál hányadosnak nevezzük, ez a derivált.
Az érintő meredeksége
a differenciál hányados:
az pontban a derivált
Egy függvény deriváltja tehát azt mondja meg, hogy milyen meredek érintő húzható a függvény grafikonjához.
Az függvény deriváltjának jelölésére az van forgalomban.
Lássuk melyik függvénynek mi a deriváltja!
A konstans függvények deriváltja nulla.
Például egy konstans függvény és
A hatványfüggvények deriváltja
például deriváltja
Ha úgy adódik, hogy ilyen gyökös izéket kell deriválni, azt ugyanígy kell:
és a derivált
Az egy biztos pont az életünkben, ugyanis deriváltja önmaga:
Az deriváltja kicsit rondább:
Itt van például ez, hogy
nos ennek a deriváltja nem mert itt x a kitevőben van.
és ez a bizonyos egy konkrét szám, nevezetesen e alapú logaritmus 5, de aggodalomra semmi ok, a számológéppel ki tudjuk számolni:
Ez igazán remek, de maradjunk inkább annál, hogy .
Aztán itt van az emlegetett deriváltja:
Az egyéb logaritmusok deriváltja pedig
például 10-es alapú logaritmus, így hát a=10 és a derivált:
Aztán itt jönnek a trigonometrikus függvények.
A szinusz deriváltja koszinusz, a koszinusz deriváltja mínusz szinusz.
A tangens deriváltja
na az már jóval barátságtalanabb, a többiről nem is beszélve.
Most pedig jöjjenek a deriválási szabályok!
És itt jön a legviccesebb, az összetett függvény deriválási szabálya.
Van itt egy függvény, ez még nem összetett.
Akkor válik összetett függvénnyé, ha x helyett mondjuk az van, hogy
Na ez már összetett függvény, és a szabály szerint úgy kell deriválni, hogy először deriváljuk a külső függvényt, ami az, hogy
aztán megszorozzuk a belső függvény deriváltjával.
Vagy itt van egy másik.
Ez nem összetett függvén, hanem egy ártatlan kis összeg.
De ha ez az egész a negyediken van,
na akkor már összetett függvény.
A külső függvény itt az, hogy
aminek a deriváltja, ahogyan lenni szokott
aztán itt is szorozni kell még a belső függvény deriváltjával.
És itt van például ez.
A külső függvény deriváltja
Most pedig elérkezett az idő, hogy szerencsét próbáljunk
a deriválás feladatokkal.
Van itt egy függvény.
Ha néhány pontjában érintőt húzunk a függvényhez,
akkor az látszik, hogy ahol az érintő fölfelé megy, ott a függvény növekszik,
ahol az érintő lefelé megy, ott a függvény csökken.
Ott pedig, ahol az érintő vízszintesen megy, a függvénynek minimuma van,
de tulajdonképpen lehet maximuma is.
Mi az a deriválás, Deriváltak kiszámolása, Differencia hányados, Differenciál hányados, Alapderiváltak, Deriválási szabályok, Összeg deriváltja, Szorzat deriváltja, Hányados deriváltja, Összetett függvény deriváltja, A láncszabály, Deriválás feladatok megoldásokkal.
Az érintő tehát valahogy együtt mozog a függvénnyel, így ha ki tudjuk számolni a függvény érintőinek a meredekségét, akkor meg tudjuk mondani, hogy mit csinál
maga a függvény.
Számoljuk ki mondjuk ennek az érintőnek a meredekségét.
A meredekség azt jelenti, hogy ha egyet lépünk előre, akkor mennyit lépünk fölfelé.
A meredekség kiszámolásához segítségül hívunk egy másik pontot.
Először annak az egyenesnek számoljuk ki a meredekségét,
ami ezen a két ponton megy át.
Lássuk mekkora ennek az egyenesnek a meredeksége!
amennyit fölfele megy
amennyit előre megy
Ezt a meredekséget differencia hányadosnak nevezzük.
A szelő meredeksége a
differenciahányados:
Ez igazán remek, de eredetileg az érintő meredekségének kiszámolása volt a cél.
Nos úgy lesz ebből érintő, hogy -et elkezdjük közelíteni felé, és így a szelők egyre jobban közelítenek az érintőhöz.
Az érintő meredeksége tehát a szelők meredekségének a határértéke.
Ezt differenciál hányadosnak nevezzük, ez a derivált.
Az érintő meredeksége
a differenciál hányados:
az pontban a derivált
Egy függvény deriváltja tehát azt mondja meg, hogy milyen meredek érintő húzható a függvény grafikonjához.
Az függvény deriváltjának jelölésére az van forgalomban.
Lássuk melyik függvénynek mi a deriváltja!
A konstans függvények deriváltja nulla.
Például egy konstans függvény és
A hatványfüggvények deriváltja
például deriváltja
Ha úgy adódik, hogy ilyen gyökös izéket kell deriválni, azt ugyanígy kell:
és a derivált
Az egy biztos pont az életünkben, ugyanis deriváltja önmaga:
Az deriváltja kicsit rondább:
Itt van például ez, hogy
nos ennek a deriváltja nem mert itt x a kitevőben van.
és ez a bizonyos egy konkrét szám, nevezetesen e alapú logaritmus 5, de aggodalomra semmi ok, a számológéppel ki tudjuk számolni:
Ez igazán remek, de maradjunk inkább annál, hogy .
Aztán itt van az emlegetett deriváltja:
Az egyéb logaritmusok deriváltja pedig
például 10-es alapú logaritmus, így hát a=10 és a derivált:
Aztán itt jönnek a trigonometrikus függvények.
A szinusz deriváltja koszinusz, a koszinusz deriváltja mínusz szinusz.
A tangens deriváltja
na az már jóval barátságtalanabb, a többiről nem is beszélve.
Most pedig jöjjenek a deriválási szabályok!
És itt jön a legviccesebb, az összetett függvény deriválási szabálya.
Van itt egy függvény, ez még nem összetett.
Akkor válik összetett függvénnyé, ha x helyett mondjuk az van, hogy
Na ez már összetett függvény, és a szabály szerint úgy kell deriválni, hogy először deriváljuk a külső függvényt, ami az, hogy
aztán megszorozzuk a belső függvény deriváltjával.
Vagy itt van egy másik.
Ez nem összetett függvén, hanem egy ártatlan kis összeg.
De ha ez az egész a negyediken van,
na akkor már összetett függvény.
A külső függvény itt az, hogy
aminek a deriváltja, ahogyan lenni szokott
aztán itt is szorozni kell még a belső függvény deriváltjával.
És itt van például ez.
A külső függvény deriváltja
Most pedig elérkezett az idő, hogy szerencsét próbáljunk
a deriválás feladatokkal.