14 témakör, 274 rövid és szuper érthető epizód

Ez az ütős Matematika Gyógyszerészeknek kurzus segít mindent azonnal megérteni és sikeresen vizsgázni. 274 rövid és szuper-érthető epizód segítségével 14 témakörön keresztül vezet végig az őrülten jó Matematika Gyógyszerészeknek rögös útjain. Mindezt olyan laza stílusban, mintha csak a rántotta elkészítésének problémájáról lenne szó.

Tartalomjegyzék: 

A kurzus 14 szekcióból áll: Rémes előzmények, Függvények, Sorozatok, Sorok, Határérték és folytonosság, Deriválás, Deriválás alkalmazása, Határozatlan Integrálás, Határozott Integrálás, Kétváltozós függvények, Mátrixok és vektorok, Lineáris egyenletrendszerek, Determináns, sajátérték, Differenciálegyenletek

Rémes előzmények

  • -

    Elsőfokú egyenletek megoldása, a mérleg elv. Törtes egyenletek megoldása.

  • -

    A másodfokú egyenlet megoldóképletének gyök alatti része a diszkrimináns.

  • -

    A másodfokú egyenlet megoldóképlete és alkalmazása.

  • -

    Az elsőfokú egyenlőtlenségeknél még izgalmasabbak a másodfokú egyenlőtlenségek.

  • -

    Egy szám abszolútértékén a nullától való távolságát értjük.

  • -

    Megnézzük, hogy milyen izgalmak fordulhatnak elő a gyökös egyenletek világában. Hogyan kell megoldani egy gyökös egyenletet? Mikor lehet egy egyenletet négyzetre emelni? Milyen kikötéseket kell tenni egy gyökös egyenlet megoldásánál? Törtes gyökös egyenletek. Másodfokú egyenletre vezető gyökös egyenletek.

  • -

    Itt jönnek az exponenciális függvények.

  • -

    Készítünk egy szuper-érthető összefoglalót a hatványazonosságokból. Megnézzük, hogyan kell a hatványazonosságokat használni. Megnézzük mi az az exponenciális függvény és hogyan kell ábrázolni.

  • -

    Mik azok az exponenciális egyenletek? Hogyan kell megoldani egy exponenciális egyenletet? Törtes exponenciális egyenletek. Másodfokú egyenletre vezető exponenciális egyenletek.

  • -

    Mik azok a logaritmusos egyenletek? Hogyan kell megoldani egy logaritmikus egyenletet? Milyen kikötéseket kell tenni egy logaritmusos egyenlet megoldásánál? Törtes logaritmikus egyenletek. Másodfokú egyenletre vezető logaritmikus egyenletek.

  • -

    Itt végre szuper-érthetően kiderül, hogy mi az a logaritmus. Készítünk egy gyors kis összefoglalót a logaritmus azonosságairól. Megnézzük, hogyan kell a logaritmus azonosságokat használni. Megnézzük mi az a logaritmus függvény és hogyan kell ábrázolni.

  • -

    Készítünk egy szuper-érthető összefoglalót a logaritmus azonosságokról. Megnézzük, hogyan kell az azonosságokat használni, milyen kikötéseket kell tenni a logaritmikus kifejezéseknél, hogyan néz ki a logaritmus függvény.

Függvények

  • -

    Megnézzük, hogy melyik függvény hogyan néz ki, aztán megnézzük a külső és belső függvénytranszformációkat. Eltolás az x tengely mentén, eltolás az y tengely mentén, tükrözés, nyújtás.

  • -

    Konkáv vagy konvex egy függvény?

  • -

    A függvény monotonitása lehet növekedő, csökkenő, szigorúan monton növekedő vagy szigorúan monoton csökkenő.

  • -

    Globális és lokális maximumok és minimumok.

  • -

    Mikor páros, mikor páratlan vagy éppen egyik sem egy függvény.

  • -

    Lássuk mik azok a polinomfüggvények, és hogyan kell őket ábrázolni.