Matematika Gyógyszerészeknek
A kurzus 14 szekcióból áll: Rémes előzmények, Függvények, Sorozatok, Sorok, Határérték és folytonosság, Deriválás, Deriválás alkalmazása, Határozatlan Integrálás, Határozott Integrálás, Kétváltozós függvények, Mátrixok és vektorok, Lineáris egyenletrendszerek, Determináns, sajátérték, Differenciálegyenletek
Rémes előzmények
- -
Elsőfokú egyenletek megoldása, a mérleg elv. Törtes egyenletek megoldása.
- -
A másodfokú egyenlet megoldóképlete és alkalmazása.
- -
A másodfokú egyenlet megoldóképletének gyök alatti része a diszkrimináns.
- -
Egy szám abszolútértékén a nullától való távolságát értjük.
- -
Megnézzük, hogy milyen izgalmak fordulhatnak elő a gyökös egyenletek világában. Hogyan kell megoldani egy gyökös egyenletet? Mikor lehet egy egyenletet négyzetre emelni? Milyen kikötéseket kell tenni egy gyökös egyenlet megoldásánál? Törtes gyökös egyenletek. Másodfokú egyenletre vezető gyökös egyenletek.
- -
Készítünk egy szuper-érthető összefoglalót a hatványazonosságokból. Megnézzük, hogyan kell a hatványazonosságokat használni. Megnézzük mi az az exponenciális függvény és hogyan kell ábrázolni.
- -
Az exponenciális függvények meglehetősen fontosak a matematikában, sőt nem csak a matematikában. Itt jönnek az exponenciális függvények.
- -
Mik azok az exponenciális egyenletek? Hogyan kell megoldani egy exponenciális egyenletet? Törtes exponenciális egyenletek. Másodfokú egyenletre vezető exponenciális egyenletek.
- -
Itt végre szuper-érthetően kiderül, hogy mi az a logaritmus. Készítünk egy gyors kis összefoglalót a logaritmus azonosságairól. Megnézzük, hogyan kell a logaritmus azonosságokat használni. Megnézzük mi az a logaritmus függvény és hogyan kell ábrázolni.
- -
Készítünk egy szuper-érthető összefoglalót a logaritmus azonosságokról. Megnézzük, hogyan kell az azonosságokat használni, milyen kikötéseket kell tenni a logaritmikus kifejezéseknél, hogyan néz ki a logaritmus függvény.
Függvények
- -
Megnézzük, hogy melyik függvény hogyan néz ki, aztán megnézzük a külső és belső függvénytranszformációkat. Eltolás az x tengely mentén, eltolás az y tengely mentén, tükrözés, nyújtás.
- -
A függvény monotonitása lehet növekedő, csökkenő, szigorúan monton növekedő vagy szigorúan monoton csökkenő.
- -
Globális és lokális maximumok és minimumok.
- -
A függvény konvexitása megmondja, hogy a függvény szomorú vagy vidám hangulatban van.
- -
Mikor páros, mikor páratlan vagy éppen egyik sem egy függvény.
- -
Lássuk mik azok a polinomfüggvények, és hogyan kell őket ábrázolni.
- -
A függvény hozzárendelésének megfordításával kapjuk a függvény inverzfüggvényét, amennyiben a megfordított hozzárendelés is egy egyértelmű hozzárendelés.
Sorozatok
- -
Nevezetes 0-hoz tartó sorozatok.
- -
Nevezetes végtelenhez tartó sorozatok.
- -
Nevezetes gyökös sorozatok határértéke.
- -
Exponenciális kifejezések határértéke.
- -
Egy nevezetes sorozatcsalád, az e-hez tartó sorozatok.
- -
Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük. Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük. Az ugráló sorozatokat oszcillálónak nevezzük. Lássunk néhány példát.
- -
Ha két rendőr közrefog egy honpolgárt és a két rendőr konvergál a rendőrőrsre, akkor az általuk közrefogott honpolgárnak is szükségképpen konvergálnia kell a rendőrőrsre..
- -
- -
A végtelenbe tartó sorozatok nagyságrendi sorrendje azt mondja meg, hogy melyik sorozat milyen ütemben tart a végtelenbe. Minél nagyobb nagyságrendű egy sorozat, annál gyorsabban tart a végtelenbe
- -
Egy sorozatnak torlódási pontja az A szám, ha bármilyen kis környezetében a sorozatnak végtelen sok tagja van.
- -
Egy sorozat limesz inferiorja a torlódási pontjainak infinuma. A limesz szuperiorja a torlódási pontjainak szuprémuma.
- -
A sorozatok egyik legfontosabb tulajdonsága a határértékük, ami azt jelenti, hogy mi történik a sorozattal ahogy egyre és egyre nagyobb indexű tagjait vizsgáljuk.
- -
Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük.
- -
Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük.
- -
A sorozat monotonitása lehet monton nő, monoton csökkenő, szigorúan monoton nő, szigorúan monoton csökkenő.
Sorok
- -
A mértani sor képlete, példák mértani sorokra.
- -
Egy végtelen sor akkor konvergens, ha részletösszegsorozata konvergens.
- -
Ha egy sorozat határértéke nem 0, akkor a belőle képzett sor divergens.
- -
Speciális sorok.
- -
Egy másik fontos konvergenciakritérium, ami az n-edik tag n-edik gyökének segítségével dönti el a konvergenciát.
- -
Egy fontos konvergenciakritérium, amely az n+1-edik tag és az n-edik tag hányadosával dönti el a konvergenciát.
- -
Speciális sorok.
- -
A sorok konvergenciájának megállapítására vonatkozó képletek.
- -
Tört hatványának sorának konvergenciája a hatványkitevőtől függően.
- -
Olyan sorok, amelyek valójában az első és az utolsó tagon kívül semmilyen más tagot nem tartalmaznak.
- -
Ha $x_0$ a hatványsor középpontja, akkor az $x_0$ pont $r$ sugarú környezetét konvergencia tartománynak nevezzük, ahol $r$ a konvergenciasugár.
- -
A hatványsorok konvergenciájának vizsgálata.
Határérték és folytonosság
- -
Egy függvényt akkor nevezünk folytonosnak valamely pontban, ha itt a függvényérték és a határérték megegyezik. Lássuk miért is ennyire fontos ez.
- -
Függvények szakadása négy féle lehet: megszüntethető szakadás, ugrás, nem megszüntethető, nem véges szakadás, nem megszüntethető oszcilláló szakadás.
- -
Lássuk mi is az a függvényhatárérték!
- -
Lássuk mi is az a függvényhatárérték!
Deriválás
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
Konstans deriváltja, polinomok deriválási szabálya. Az exponenciális és logaritmus függvények deriválása. Trigonometrikus függvények deriváltjai.
- -
Függvény konstansszorosának, két függvény összegének, szorzatának és hányadosának deriválási szabályai. Összetett függvények deriválási szabálya.
- -
A lánc-szabály az összetett függvények deriválási szabálya.
- -
A sinh és cosh hiperbolikus függvények közt fennálló azonosságok.
- -
A cosh, sinh és tanh függvények deriváltjai.
- -
A cosh, sinh és tanh függvények inverzfüggvényei.
- -
Az arcosh, arsinh és artanh függvények deriváltjai.
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
A függvény érintője egy olyan egyenes, amely egy függvényt pontosan egy pontban érint.
Deriválás alkalmazása
- -
A határérték számítás csodafegyvere, egy szuper módszer, amivel nagyon sok bonyolult határérték gyorsan kiszámolható.
- -
Néhány exponenciális, logaritmusos és végtelenhez, nullához tartó nevezetes sorozatok határértékei.
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Az $e^x$, lnx, sinx és cosx függvények Taylor sorai.
- -
Amikor egy függvény x helyen lévő értékét szeretnénk közelíteni egy Taylor polinommal, akkor lesz egy kis hibánk, mivel a polinom nem teljesen követi a függvényt. Ennek a hibának a kifejezésére van a Lagrange-féle maradéktag.
Határozatlan Integrálás
- -
Az f(x) függvény primitív függvényének jele F(x) és azt tudja, hogy ha deriváljuk, akkor visszakapjuk f(x)-et. Egy függvény primitív függvényeinek halmazát nevezzük a függvény határozatlan integráljának.
- -
Polinomok integrálása. Törtfüggvény integrálása. Exponenciális függvények integrálása. Trigonometrikus függvények integrálása.
- -
Polinomok, törtfüggvény, exponenciális függvények, trigonometrikus függvények integráljainak lineáris helyettesítései.
- -
Integráláskor a konstans szorzó kivihető.
- -
Összeget külön-külön is integrálhatunk.
- -
Ha a szorzás elvégezhető, akkor végezzük el, és utána integráljunk.
- -
Szorzat integrálásának egy speciális esete, amikor a függvény n-edik hatványon van és meg van szorozva a deriváltjával.
- -
Ezzel a remek módszerrel szorzatokat tudunk integrálni úgy, hogy egy bonyolultabb integrálásból csinálunk egy egyszerűbb integrálást.
- -
Összetett függvényeket általában akkor tudunk integrálni, ha azok meg vannak szorozva a belső függvényük deriváltjával. Van is erre egy remek kis képlet.
- -
Próbálkozzunk a tört földarabolásával és utána integráljunk.
- -
Törtek integrálásának egy speciális esete, amikor a tört számlálója a nevező deriváltja.
- -
A helyettesítéses integrálás lényege, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk majd megoldani a feladatot.
- -
A helyettesítéses integrálás lényege, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk majd megoldani a feladatot.
- -
A helyettesítéses integrálás úgy működik, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk megoldani a feladatot.
A helyettesítéses integrálás egyik legfurcsább esete az $u = \tan{ \frac{x}{2} } $. Olyankor használjuk, ha a törtben $\sin{x}$ és $\cos{x}$ is csak első fokon szerepel.
- -
A racionális törtfüggvények integrálásához a függvényeket parciális törtekre kell bontani, majd a parciális törteket egyesével integrálni.
Határozott Integrálás
- -
A Newton-Leibniz formula egy egyszerűen használható képlet a határozott integrál kiszámításához. Ez a tétel az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
- -
Egy zárt intervallumon értelmezett függvény akkor Riemann integrálható, ha egyetlen olyan szám létezik, amely bármely alsó közelítő összegénél nagyobb egyenlő, és bármely felső közelítő összegénél kisebb egyenlő.
- -
Végtelenbe nyúló tartományok területének kiszámolása egy fontos függvénnyel.
- -
Forgástestek térfogatának és felszínének képletei határozott integrálással.
Kétváltozós függvények
- -
A kétváltozós függvények úgy működnek, hogy két valós számhoz rendelnek hozzá egy harmadik valós számot.
- -
A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.
- -
A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
- -
Egy általános módszer, amivel kétváltozós függvények szélsőértékeit és nyeregpontjait lehet meghatározni
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- -
másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen nyeregpontja van-e.
- -
A sík azon pontjainak összességét, amelyekben az $f$ függvény ugyanazt a konstans értéket veszi fel, az $f$ függvény szintvonalának nevezzük.
- -
Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ez esetben most egy sík lesz az érintő.
- -
A parciális deriváltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
- -
Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.
- -
Egy függvény akkor implicit, ha $y$ nincs kifejezve, vagyis nem $y=\dots$ alakú.
- -
Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.
- -
A kétváltozós függvények határozott integrálja egy test térfogata.
- -
A kettősintegrálok segítségével különböző felületek alatti térfogatokat tudunk kiszámolni. A legegyszerűbb eset, amikor egy téglalapon integrálunk. Ilyenkor az integrálás határai valamilyen számok.
Mátrixok és vektorok
- -
- -
Ha egy mátrixot egy számmal szorzunk, akkor a mátrix összes elemét meg kell szorozni a számmal.
- -
Ha egy mátrixot osztunk egy számmal, akkor a mátrix minden elemét osztani kell a számmal.
- -
Két mátrix összeadásakor összeadjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet összeadni, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix kivonásakor kivonjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet kivonni egymásból, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix szorzata akkor létezik, ha a bal oldali mátrix oszlopainak száma megegyezik a jobb oldali mátrix sorainak számával. Az eredménymátrix i-edik sorának j-edik elemét úgy kapjuk, hogy a bal oldali mátrix i-edik sorát skalárisan szorozzuk a jobb oldali mátrix j-edik oszlopával. (Tehát az első elemet az elsővel, a másodikat a másodikkal stb. szorozzuk, majd összeadjuk)
- -
A mátrix összeadás kommutatív és asszociatív.
- -
A mátrixszorzás nem kommutattív, de asszociatív.
- -
A kvadratikus mátrix négyzetes mátrix vagyis ugyanannyi sora van, mint oszlopa.
- -
A diagonális mátrix olyan kvadratikus mátrix, aminek a főátlóján kívüli elemek nullák.
- -
Az egységmátrixok olyan diagonális mátrixok, aminek minden főátló-eleme egy.
- -
Az inverz mátrix egy olyan mátrix, hogy ha azzal szorozzuk az eredeti mátrixot, akkor egységmátrixot kapunk. Ha balról szorozva kapunk egységmátrixot, akkor bal inverz, ha jobbról szorozva, akkor jobb inverz mátrix.
- -
A transzponált a mátrix sorainak és oszlopainak felcserélése.
- -
Azokat a mátrixokat, melyek transzponáltjuk önmaga, szimmetrikus mátrixnak nevezzük.
- -
Vektort egy számmal úgy szorzunk, hogy a vektor minden koordinátáját megszorozzuk a számmal.
- -
Vektort egy számmal úgy osztunk, hogy a vektor minden koordinátáját leosztjuk a számmal.
- -
Két vektort úgy adunk össze, hogy minden egyes koordinátájukat külön-külön össze adjuk.
- -
Két vektort úgy vonunk ki egymásból, hogy minden egyes koordinátájukat külön-külön kivonjuk egymásból.
- -
A skaláris szorzat két vektor közti művelet, ami csinál belőlük egy számot.
- -
Két vektor diadikus szorzata egy mátrix. Lássuk milyen.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak sorait.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak egy oszlopában lévő elemeit.
- -
Ha egy mátrixot megszorzunk jobbról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik oszlopát.
- -
Ha egy mátrixot megszorzunk balról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik sorát.
- -
Az egyenes egyenletének felírásához kell egy pontja és egy normálvektora.
- -
A sík egyenletének felírásához kell egy pontja és egy normálvektora.
- -
Két pont közti vektort a vektorok koordinátáinak különbségével írhatunk fel.
- -
Két pont távolsága gyök alatt a koordináták különbségeinek négyzetösszege.
- -
Az egyenes egyenletének felírásához a síkban szükségünk van az egyenes egy pontjára és a normálvektorára.
- -
A sík egyenletének felírásához kell a sík egy pontja és a normálvektora.
- -
Két vektor vektoriális szorzatát egy 3x3-as mátrix determinánsával számíthatjuk ki, ahol a mátrix első sora egységvektorok, a második és harmadik sora pedig az a és b vektorok.
- -
Két vektor vektoriális szorzata egy olyan harmadik vektort ad, ami merőleges a két vektor által kifeszített síkra.
- -
A vektorösszeadás kommutatív, asszociatív, létezik nullelem és létezik ellentett. A skalárszoros asszociatív, disztributív a vektorokra és a skalárokra is, és létezik egységszeres.
- -
Egy vektorrendszer akkor lineárisan független, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.
- -
Egy vektorrendszer akkor lineárisan összefüggő, ha a vektorok lineáris kombinációjaként a nullvektor úgy is elő tud állni, hogy nem minden szorzótényező 0.
- -
Vektorok generátor-rendszert alkotnak, ha minden vektortérbeli vektor elő áll az ő lineáris kombinációjuként.
- -
Egy vektorrendszer akkor alkot független rendszert, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.
- -
A bázis független generátorrendszer.
- -
Egy vektorrendszer rangja a benne lévő független vektorok maximális száma
- -
W altér V-ben, ha részhalmaza és maga is vektortér a V-beli műveletekre. Nos ez remek, de nézzük meg, mit is jelet mindez.
- -
Egy vektor akkor állítható egy vektorrendszerrel, ha előáll azon vektorok lineáris kombinációjaként.
Lineáris egyenletrendszerek
- -
Egy egyenletrendszer együtthatómátrixa az x-ek együtthatóiból álló mátrix.
- -
Az egyenletrendszer megoldásának egy szuper, de koránt sem a legszuperebb módja.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Ha egy egyenletrendszernek több az ismeretlene, mint ahány egyenlete van, akkor az egyenletrendszernek nincs egyértelmű megoldása.
- -
Ha egy egyenletrendszerben két olyan egyenlet szerepel, ahol az ismeretlenek együtthatói megegyeznek, de más az eredményük, akkor az ellentmondó egyenletrendszer, aminek nincs megoldása.
- -
A szabadságfok a szabadváltozók száma.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
Determináns, sajátérték
- -
A determináns úgy működik, hogy minden négyzetes mátrixból csinál egy valós számot. Hogy miért, és, hogy hogyan, az mindjárt kiderül.
- -
Egy 2x2-es mátrix determinánsát úgy kapjuk, hogy a bal átló elemeinek szorzatából kivonjuk a jobb átló elemeinek szorzatát.
- -
Egy nem túl jó módszer a determináns kiszámolására.
- -
Egy túl jó módszer a determináns kiszámolására.
- -
Példák mikor nulla egy mátrix determinánsa. Két mátrix szorzatának determinánsa.
- -
Azokat a mátrixokat nevezzük szingulárisnak, amelyek determinánsa nulla.
- -
Azokat a mátrixokat nevezzük regulárisnak, amelyek determinánsa nem nulla.
- -
A Cramer szabály egy újabb módszer az egyenletrendszerek megoldására.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix diagonális alakját. Lássuk ez miért ilyen roppant fontos.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix spektrálfelbontását.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor a mátrix diagonizálható.
- -
Egy mátrix sarok főminor mátrixai a mátrix bal felső sarkától kezdődő sarok mátrixok determinánsai.
- -
Egy mátrix főminor mátrixai a mátrix bal felső sarkától kezdődő sarok mátrixok determinánsai.
- -
Egy nxn-es mátrix pozitív definit, ha minden sajátértéke pozitív.
- -
Egy nxn-es mátrix negatív definit, ha minden sajátértéke negatív.
- -
Egy nxn-es mátrix pozitív szemidefinit, ha minden sajátértéke nagyobb vagy egyenlő 0.
- -
Egy nxn-es mátrix negatív szemidefinit, ha minden sajátértéke kisebb vagy egyenlő 0.
- -
Egy nxn-es mátrix indefinit, ha van nullánál nagyobb és nullánál kisebb sajátértéke is..
- -
Éjszaka nem ajánlatos összefutni velük az utcán...
- -
A kvadratikus alakok mátrixa segít eldönteni a definitséget.
- -
A lineáris leképezés egy test feletti vektorterek között ható művelettartó függvény.
- -
A képtér egy olyan altér $V_2$-ben, amely azokból a vektorokból áll, amiket a $V_1$-beli vektorokból csinál a leképezés.
- -
A magtér egy olyan altér $V_1$-ben, amelyek képe a leképezés során nullvektor.
- -
A képtér és a magtér dimenzióinak összege éppen $V_1$ dimenziója.
- -
Minden lineáris leképezést jellemezhetünk egy mátrixszal.
- -
Egy leképezésnek akkor létezik inverze, ha a leképezés mátrixának létezik inverze.
- -
Két leképezés kompozíciója a mátrixaik szorzata.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix diagonális alakját. Lássuk ez miért ilyen roppant fontos.
- -
Ha a mátrixnak létezik diagonális alakja, akkor van sajátbázisa, ami fantasztikus dolgokra képes.
- -
A lineáris leképezések másnéven homomorfizmusok. Ezek a homomorfizmusok és azok mátrixai maguk is egy vektorteret alkotnak, ezt a vektorteret $Hom(V_1, V_2)$-nek nevezzük.
- -
Az A és B mátrixok hasonlók, ha létezik egy C mátrix, amivel ha jobbról szorozzuk a B-t, balról pedig a C inverzével szorozzuk, akkor ennek eredménye A.
Differenciálegyenletek
- -
A differenciálegyenletek olyan egyenletek, amiben az ismeretlenek függvények. Az egyenletben ezeknek a függvényeknek a különböző deriváltjai és hatványai szerepelnek.
- -
Azt mondja meg, hogy az ismeretlen függvény maximum hanyadik deriváltja szerepel az egyenletben.
- -
Ha az ismeretlen függvény és deriváltjai csak első fokon szerepelnek a differenciálegyenletben, akkor az egyenlet lineáris.
- -
Olyan differenciálegyenlet, amelyet az egyenlet szétválasztásával és a két rész külön-külön integrálásával lehet megoldani
- -
Egy differenciálegyenlet homogén fokszámú, ha $y=ux$ helyettesítés után minden $x$-es tag kitevője megegyezik.
- -
A differenciálegyenletek második fő típusa, sok helyen nincs benne a tananyagban.
- -
annak olyan egyenletek, amelyek ugyan nem egzaktak, de egy ügyes trükk segítségével egzakttá tehetők. Itt jön a trükk...
- -
Az egyik legfontosabb típus az y'+Py=Q alakú differenciálegyenlet, amelyre egy részletes megoldási tervet adunk.
- -
A konstans variálás módszere egy megoldási módszer az elsőrendű lineáris differenciálegyenletekhez.
- -
Az elsőrendű lineáris állandó együtthatós differenciálegyenlet egy speciális esete a lineáris elsőrendű egyenleteknek. Azért hívják állandó együtthatósnak, mert a $P(x)$ függvény ilyenkor valamilyen konstans, mondjuk $a$.
- -
Ez olyankor van, ha a homogén megoldás és a partikuláris megoldás hasonlít egymásra. Lássuk mit is jelent ez...
- -
A másodrendű lineáris állandó együtthatós homogén differenciálegyenlet általános alakja: $ay'' + by' + cy = 0 $. Megoldásához a karakterisztikus egyenletet használjuk.
- -
A másodrendű lineáris állandó együtthatós inhomogén differenciálegyenlet általános alakja: $ay'' + by' + cy = Q(x) $. A homogén megoldást megkapjuk a karakterisztikus egyenlet segítségével, a partikuláris megoldást pedig a próbafüggvény módszerrel végezzük.
- -
Azon pontok halmazát, melyekben a megoldásfüggvények meredeksége egy adott számmal egyenlő, a differenciálegyenlet izoklinájának nevezzük.