A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados:
\( m= \lim_{x \to x_0}{ \frac{ f(x)-f(x_0)}{x-x_0}} \)
Ezt nevezzük a függvény $x_0$ pontban vett deriváltjának. Hogyha a derivált ebben a pontban pozitív, az azt jelenti, hogy pozitív meredekségű érintő húzható a függvényhez. Vagyis a függvény ebben a pontban növekszik. Ha pedig a derivált ebben a pontban negatív, akkor negatív meredekségű érintő húzható a függvényhez, és így a függvény csökken. A derivált tehát a függvény növekedési és csökkenési szakaszait képes nekünk megmutatni, és hatalmas szerepe van a függvények viselkedésének vizsgálatánál.
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
Deriváljuk az alábbi függvényeket.
a) \( \left( 5\cdot x^3 \right)' = \; ? \)
b) \( \left( \frac{x^5}{7} \right)' = \; ? \)
c) \( \left( x^2+\ln{x} \right)' = \; ? \)
d) \( \left( x^3 \cdot \ln{x} \right)' = \; ? \)
e) \( \left( \frac{x^2}{\ln{x}} \right)' = \; ? \)
f) \( \left( \frac{5}{x^3+2} \right)' = \; ? \)