Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor létezik a mátrixnak egy úgynevezett diagonális alakja.
A diagonális alak így néz ki:
\( \text{diag}(A)=\begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \)
a főatlóban vannak a sajátértékek és az összes többi elem nulla.
A diagonális alakot a következő módon állítjuk elő:
\( \text{diag}(A) =X^{-1} \cdot A \cdot X \)
itt $X= \begin{pmatrix} \underline{v}_1 & \underline{v}_2 & \dots \underline{v}_n \end{pmatrix} $
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix diagonális alakját. Lássuk ez miért ilyen roppant fontos.
Ellenőrizzük, hogy az alábbi leképezések lineáris leképezések-e, ha igen adjuk meg a képteret, a magteret és a transzformáció mátrixát.
\( R^3 \to R^3 \qquad \varphi\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a-b \\ b-a \\ c \end{pmatrix} \qquad a,b,c \in R \)