Matematikai alapok 2 epizód tartalma:

A szeparábilis differenciálegyenletek megoldása, A differenciálegyenlet szétválasztás, Az általános megoldás, A partikuláris megoldás, Kezdetiérték-probléma, Mitől szeparábiilis egy differenciálegyenlet? Differenciálegyenlet feladatok megoldással.

A képsor tartalma

Lássuk mit tehetnénk ezzel.

-t lecseréljük arra, hogy

Beszorzunk dx-el.

Most jön a szétválasztás: minden y-os dolgot a dy-os oldalra viszünk és minden x-eset a dx-es oldalra.

Mindkét oldalt integráljuk és megkapjuk a megoldást.

A +C ilyenkor elég csak az egyik oldalra.

ÁLTALÁNOS MEGOLDÁS:

Ha y konstans nulla, akkor itt nem oszthattunk volna vele.

Lássuk y=0 megoldás-e

Úgy tűnik igen.

PARTIKULÁRIS MEGOLDÁS:

A partikuláris megoldást úgy kapjuk, ha a C-t rögzítjük.

Mondjuk nagyon boldoggá tenne minket egy olyan megoldás, amikor y(0)=666

Van itt aztán egy másik egyenlet, nézzük meg ezt is.

Most pedig, megszabadulunk a logaritmusoktól.

Van egy ilyen, hogy

Így aztán pápá logaritmus.

Itt C valamilyen konstans, így ec egy másik valamilyen konstans, hívjuk D-nek.

Meg kell még néznünk, hogy az y=0 megoldás-e.

Úgy látszik igen.

A partikuláris megoldás most is azt jelenti, hogy D-t rögzítjük valamilyen számnak.

Mondjuk szeretnénk, hogy teljesüljön.

Itt van aztán egy viccesebb ügy.

Van egy ilyen, hogy így aztán pápá tangens.

Hát ez megvolna.

Most pedig lássunk egy újabb differenciálegyenlet-típust.

Egy lépésre vagy attól, hogy a matek melléd álljon és ne eléd.
  • Konkrétan a hetedikes öcsém megtanult deriválni, ez elég bizonyíték, hogy az oldal érthetően magyaráz.

    Gábor, 18
  • Nagyon jó árba van, valamint jobb és érthetőbb, mint sok külön matek tanár.

    Márk, 22
  • Felsőbb éves egyetemisták ajánlották, "kötelező" címszóval.
    Ricsi, 19
  • A mateking miatt sikerült az érettségi és az összes egyetemi matekos tárgyam.

    Míra, 21
BelépekvagyRegisztrálok Back arrow Ugrás az
összeshez