Statisztika | mateking
 
9 témakör, 157 rövid és szuper érthető epizód
Ezt a nagyon laza Statisztika kurzust úgy terveztük meg, hogy egy csapásra megértsd a lényeget. Tudásszinttől függetlenül, teljesen az alapoktól magyarázzuk el a tananyagot, a saját ritmusodban lépésről lépésre. Így tudjuk a legbonyolultabb dolgokat is elképesztően egyszerűen elmagyarázni.
3 450 Forint

Tartalomjegyzék: 

A kurzus 9 szekcióból áll: Alapfogalmak, Egy ismérv szerinti elemzés, Két ismérv szerinti elemzés, Standardizálás, Indexszámítás, Idősorok, Becslések, Hipotézisvizsgálat, Regressziószámítás

ALAPFOGALMAK - Ismérvek típusai, viszonyszámok, dinamikus viszonyszám, intenzitási viszonyszám, számtani átlag, harmónikus átlag, mértani átlag, medián, módusz, kvartilisek, szórás, gyakoriság, relatív gyakoriság, kumulált gyakoriság.

EGY ISMÉRV SZERINTI ELEMZÉS - Medián, módusz, kvartilisek, szórás, relatív szórás, gyakoriság, relatív gyakoriság, gyakorisági sor, értékösszeg sor, koncentráció, Lorenz-görbe, doboz-ábra, alakmutatók, Pearson-mutató, F-mutató.

KÉT ISMÉRV SZERINTI ELEMZÉS - Asszociációs kapcsolat, vegyes kapcsolat, korrelációs kapcsolat, ismérvek függetlensége, khi-négyzet, Cramer-mutató, Csuprov-mutató, Yule-mutató, külső szórás, belső szórás, teljes szórás, külső eltérés-négyzetösszeg, belső eltérés-négyzetösszeg, teljes eltérés-négyzetösszeg, H-mutató, PRE, szórásnégyzet hányados, lineáris korrelációs együttható.

STANDARDIZÁLÁS - Különbségfelbontás, hányadosfelbontás, főátlagok különbsége, részhatás különbség, összetételhatás különbség, főátlagindex, részhatás index, összetételhatás index.

INDEXSZÁMÍTÁS - Árindex, volumenindex, értékindex, Laspeyres-féle, Paasche-féle, Fischer-index, átlagformák, vásárlóerőparitás, infláció, indexsorok, lánc-indexsor, bázis-indexsor, árindexsor, volumenindexsor, értékindexsor.

IDŐSOROK - Állapot idősor, tartam idősor, változás üteme és mértéke, kronologikus átlag, mozgóátlagok, mozgóátlagolású trend, simítás, szűrés, dekompozíciós idősormodellek, lineáris trend, exponenciális trend, trendegyenlet, normálegyenletek, szezonalitás, szezonális eltérés, szezonindex, szezonalitással kiigazított trend, szezonalitástól megtisztított trend.

Becslések

Hipotézisvizsgálat

  • -

    Az elfogadási tartomány az a tartomány, ahová ha a próba értéke kerül, akkor a nullhipotézist elfogadjuk.

  • -

    A kritikus tartomány az a tartomány, ahová ha a próba értéke kerül, akkor a nullhipotézist elvetjük.

  • -

    A szignifikanciaszint a hibás döntés valószínűsége.

  • -

    A hipotézis megfogalmazása. A próbafüggvény kiválasztása. Szignifikanciaszint és kritikus tartomány. Mintavétel és döntés.

  • -

    A sokaság normális eloszlású, szórása $\sigma$, $H_0$ a sokaság átlagára vonatkozik, a minta elemszáma $n$.

  • -

    A sokaság normális eloszlású, szórása nem ismert, $H_0$ a sokaság átlagára vonatkozik, a minta elemszáma $n$

  • -

    A sokaság tetszőleges eloszlású, szórása nem ismert, $H_0$ a sokaság átlagára vonatkozik, a minta $n$ elemű, elemszáma nagy.

  • -

    A sokaság tetszőleges eloszlású, $H_0$ a sokasági arányra vonatkozik, a minta $n$ elemű, elemszáma nagy

  • -

    A sokaság normális eloszlású, $H_0$ a sokasági szórásra vonatkozik, a minta $n$ elemű.

  • -

    A sokaság eloszlására irányuló vizsgálat.

  • -

    A sokaságon belül két ismérv függetlenségére irányuló vizsgálat. $H_0$: a két ismérv független, az ellenhipotézis pedig, $H_1$: a két ismérv közti kapcsolat sztochasztikus vagy függvényszerű.

  • -

    Két sokaságban valamely változó eloszlásának egyezőségére irányuló vizsgálat. $H_0$: a két sokaságban az eloszlás egyező, az ellenhipotézis pedig, $H_1$: a két eloszlás nem egyező.

  • -

    Mindkét sokaság normális eloszlású, szórásaik $\sigma_X$ és $\sigma_Y$.

  • -

    A két sokaság normális eloszlású és szórásaik egyformák.

  • -

    A két sokaság eloszlása és szórása nem ismert, mindkettő szórása véges, és mindkét minta elemszáma elég nagy.

  • -

    Két sokaság szórásának összehasonlítására irányuló próba, ha mindkét sokaság normális eloszlású. A nullhipotézis $H_0$: $\sigma_1^2 = \sigma_2^2$

  • -

    Több sokaság várható értékének összehasonlítására vonatkozó próba, ha mindegyik sokaság normális eloszlású és azonos szórású.

  • -

    A Bartlett-próba több sokaság szórásának összehasonlítására vonatkozó próba, ha mindegyik sokaság normális eloszlású.

Regressziószámítás

  • -

    A regressziószámítás lényege annak vizsgálata, hogy egy bizonyos változó, amit eredményváltozónak hívunk, hogyan függ más változók, az úgynevezett magyarázó változók alakulásától.

  • -

    A magyarázóerőt méri az úgynevezett determinációs együttható.

  • -

    A lineáris korrelációs együttható azt méri, hogy x és y között milyen szoros lineáris kapcsolat van.

  • -

    Ha az SSE értékeit elosztjuk a megfigyelt pontok számával és a kapott eredménynek vesszük a gyökét, akkor kapjuk a reziduális szórást.

  • -

    A regressziós egyenes egy lineáris függvény, ami mindegyik x-hez hozzárendel valamilyen y-t. Ezek általánan eltérnek a valódi y-októl. Ezeket az eltéréseket reziduumoknak nevezzük.

  • -

    A reziduumokból képzett mutató az úgynevezett SSE, jelentése sum of squares of the errors vagyis eltérés-négyzetösszeg.

  • -

    Az exponenciális modellben y helyett lg y van, az x viszont marad x, $\hat{b}_1$ helyett pedig $\lg{ \hat{b}_1}$ van.

  • -

    A hatványkitevős modellben y helyett lg y, x helyett lg x van, $\hat{b}_1$ viszont marad $\hat{b}_1$

  • -

    Az elaszticitás két összefüggő jelenség közti kapcsolat.

  • -

    A paraméterek és a regresszió becslése standard lineáris modellben.

  • -

    5 feltétel standard lineáris modellhez.

  • -

    A többváltozós regressziós modelleket olyankor alkalmazzuk, amikor az eredményváltozó alakulását több magyarázó változó tükrében vizsgáljuk.

  • -

    A kétváltozós esethez hasonlóan a korreláció itt is a változók közti kapcsolat szorosságát írja le, csakhogy itt egy fokkal rosszabb a helyzet, ugyanis most bármely két változó korrelációját vizsgálhatjuk. Ezt tartalmazza a korrelációmátrix.

  • -

    A tesztelés úgy zajlik, hogy nullhipotézisnek tekintjük a $H_0 :  b_i = 0$ feltevést, ellenhipotézisnek pedig azt, hogy $H_1  :  b_i \neq 0$.

  • -

    Négyzetösszeg, szabadságfok, átlagos négyzetösszeg, F.

  • -

    Az autokorreláció a regresszió maradéktagjának a saját későbbi értékeivel való korrelációját jelenti, vagyis egyfajta szabályszerűséget a maradékváltozóban.

  • -

    A Durbin-Wattson-teszt lényegében egy hipotizésvizsgálat.

  • -

    A multikollinearitás röviden összefoglalva azt jelenti, hogy két vagy több magyarázó változó között túl szoros korrelációs kapcsolat van, és ez zavarja a becslést.