Matek M1 (BMETE90MX32;) - BME

Tantárgy neve: 
Matek M1 (Matematika M1, Matek M1 (terméktervezőknek))
Tárgykód: 
BMETE90MX32;
A tematika szavaira kattintva megtudhatod, hogy az adott témakört pontosan hol találod a Matekingen:

Valószínűségszámítás: A valószínűség fogalma, feltételes valószínűség, függetlenség. Valószínűségi változó, eloszlások, eloszlásfüggvény, sűrűségfüggvény, várható érték, szórás, magasabb momentumok, speciális eloszlások: binomiális eloszlás, Poisson eloszlás, egyenletes eloszlás, gamma, béta, exponenciális. Normális eloszlás, centrális határeloszlás tétel, nagy számok törvénye.

Komplex függvénytan: Elemi függvények, határérték és folytonosság. Komplex függvények differenciálása: Cauchy – Riemann egyenletek, harmonikus függvények, analitikus függvények, Taylor sor. Komplex vonalmenti integrálok: vonalintegrál függetlensége az úttól, Cauchy formulái, Liouville tétele. Szingularitások osztályozása. Reziduum, reziduum tétel, példa nevezetes integrálok kiszámítására. Konformis leképezések.

Az n-dimenziós tér vektorai: Ismétlés a BSc A1, A2 tárgyaiból.

Közönséges differenciálegyenletek: (Szétválasztható, hiányos másodrendű, egzakt, állandó együtthatós homogén és inhomogén lineáris, Euler-féle). Első és másodrendű parciális differenciálgyenlet néhány típusa, fizikai alkalmazások. Laplace transzformáció, és alkalmazásai lineáris egyenletekre, konvolúciós integrál. Fourier sor és általánosított Fourier sor, ortogonalitási tulajdonságok. A Fourier elmélet alkalmazása differenciálegyenletek megoldására.

Legutóbb frissítve: 2017. március 14.
Visszajelzés