Üzleti matematika alapjai
A kurzus 11 szekcióból áll: Függvények, Az inverzfüggvény, Sorozatok, Küszöbindex és monotonitás, Százalékszámítás és pénzügyi számítások, Függvények határértéke és folytonossága, Deriválás, Differenciálhatóság vizsgálata és az érintő egyenlete, Könnyű függvényvizsgálat és szélsőértékfeladatok, Másodfokú egyenletek, Egyenletrendszerek
Függvények
- -
A függvény értékkészlete azoknak az elemeknek a halmaza a B halmazban, amelyek hozzá vannak rendelve valamely A halmazbeli elemekhez.
- -
Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.
- -
Megnézzük, hogy melyik függvény hogyan néz ki, aztán megnézzük a külső és belső függvénytranszformációkat. Eltolás az x tengely mentén, eltolás az y tengely mentén, tükrözés, nyújtás.
- -
A függvény monotonitása lehet növekedő, csökkenő, szigorúan monton növekedő vagy szigorúan monoton csökkenő.
- -
Globális és lokális maximumok és minimumok.
- -
A függvény konvexitása megmondja, hogy a függvény szomorú vagy vidám hangulatban van.
- -
Mikor páros, mikor páratlan vagy éppen egyik sem egy függvény.
- -
Lássuk mik azok a polinomfüggvények, és hogyan kell őket ábrázolni.
Az inverzfüggvény
- -
A függvény hozzárendelésének megfordításával kapjuk a függvény inverzfüggvényét, amennyiben a megfordított hozzárendelés is egy egyértelmű hozzárendelés.
Sorozatok
- -
Nevezetes 0-hoz tartó sorozatok.
- -
Nevezetes végtelenhez tartó sorozatok.
- -
Nevezetes gyökös sorozatok határértéke.
- -
Exponenciális kifejezések határértéke.
- -
Egy nevezetes sorozatcsalád, az e-hez tartó sorozatok.
- -
Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük. Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük. Az ugráló sorozatokat oszcillálónak nevezzük. Lássunk néhány példát.
- -
Ha két rendőr közrefog egy honpolgárt és a két rendőr konvergál a rendőrőrsre, akkor az általuk közrefogott honpolgárnak is szükségképpen konvergálnia kell a rendőrőrsre..
- -
- -
A végtelenbe tartó sorozatok nagyságrendi sorrendje azt mondja meg, hogy melyik sorozat milyen ütemben tart a végtelenbe. Minél nagyobb nagyságrendű egy sorozat, annál gyorsabban tart a végtelenbe
- -
Egy sorozatnak torlódási pontja az A szám, ha bármilyen kis környezetében a sorozatnak végtelen sok tagja van.
- -
Egy sorozat limesz inferiorja a torlódási pontjainak infinuma. A limesz szuperiorja a torlódási pontjainak szuprémuma.
Küszöbindex és monotonitás
- -
A sorozatok egyik legfontosabb tulajdonsága a határértékük, ami azt jelenti, hogy mi történik a sorozattal ahogy egyre és egyre nagyobb indexű tagjait vizsgáljuk.
- -
Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük.
- -
Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük.
- -
A sorozat monotonitása lehet monton nő, monoton csökkenő, szigorúan monoton nő, szigorúan monoton csökkenő.
Függvények határértéke és folytonossága
- -
Egy függvényt akkor nevezünk folytonosnak valamely pontban, ha itt a függvényérték és a határérték megegyezik. Lássuk miért is ennyire fontos ez.
- -
Függvények szakadása négy féle lehet: megszüntethető szakadás, ugrás, nem megszüntethető, nem véges szakadás, nem megszüntethető oszcilláló szakadás.
Deriválás
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
Konstans deriváltja, polinomok deriválási szabálya. Az exponenciális és logaritmus függvények deriválása. Trigonometrikus függvények deriváltjai.
- -
Függvény konstansszorosának, két függvény összegének, szorzatának és hányadosának deriválási szabályai. Összetett függvények deriválási szabálya.
- -
A lánc-szabály az összetett függvények deriválási szabálya.
- -
A sinh és cosh hiperbolikus függvények közt fennálló azonosságok.
- -
A cosh, sinh és tanh függvények deriváltjai.
- -
A cosh, sinh és tanh függvények inverzfüggvényei.
- -
Az arcosh, arsinh és artanh függvények deriváltjai.
Differenciálhatóság vizsgálata és az érintő egyenlete
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
A függvény érintője egy olyan egyenes, amely egy függvényt pontosan egy pontban érint.
Másodfokú egyenletek
- -
A másodfokú egyenlet megoldóképlete és alkalmazása.
- -
A másodfokú egyenlet megoldóképletének gyök alatti része a diszkrimináns.
- -
A másodfokú egyenlet szorzatalakja.
- -
A Viète-formulák nem valami titkós gyógyszer hatóanyag, hanem a másodfokú egyenlet gyökei és együtthatói közötti összefüggéseket írja le.
Egyenletrendszerek
- -
A behelyettesítő módszer az egyenletrendszerek megoldásának egyik technikája, ami során az egyik ismeretlent kifejezzük a másikkal.
- -
Az egyenlő együtthatók módszere egy megoldási technika az egyenletrendszerekhez, ami során a két egyenletet összeadjuk vagy kivonjuk egymásból.