Analízis 1 képsor tartalma:

Határértékek kiszámolása, Polinom/polinom típusú sorozatok határértéke, Exponenciális sorozatok határértéke, Gyökös sorozatok határértéke.

A képsor tartalma

Itt jön egy ilyen eset:

A trükk az, hogy leosztjuk –el.

A számlálót is és a nevezőt is.

Ezzel egy -ből csináltunk egy -et.

Utóbbiról pedig lehet tudni, hogy az eredmény 2.

Nézzünk meg egy másikat is.

Végülis osszuk le ezt is -el.

Lássuk mi jön ki.

A számláló 4-hez tart.

A nevező nullához.

Nos ez baj.

A problémát az okozza, hogy a nevezőben a legnagyobb kitevőjű tag másodfokú.

Így ne lepődjünk meg, hogyha -el osztunk, a nevezőben mindenki nullához fog tartani.

Ha nem szeretnénk, hogy nullához tartson a nevező, akkor mindig a nevező legnagyobb kitevőjű tagjával kell osztanunk.

A számlálót és a nevezőt is leosztjuk a nevező legnagyobb kitevőjű tagjával.

A számlálót és a nevezőt is leosztjuk a nevező legnagyobb hatványalapú tagjával.

Először átalakítunk.

Aztán leosztunk.

A SZÁMLÁLÓT ÉS A NEVEZŐT IS LEOSZTJUK A NEVEZŐ LEGNAGYOBB KITEVŐJŰ TAGJÁVAL.

Előszöris kiderítjük, hogy melyik a nevező legnagyobb kitevőjű tagja.

Van itt ez az n2,

de köbgyök alatt van.

Aztán itt van ez az n3,

de esélyes sincs mert ötödik gyök alatt.

Végül itt van ez az n,

na úgy tűnik ő nyert.

A legnagyobb kitevőjű tag a nevezőben tehát n, vagyis vele fogunk osztani.

De ha bevisszük a gyökjelek alá, varázslatos átalakulásokon megy keresztül.

A különböző gyökjelek alatt tehát más-más kitevőjű n-ekkel osztunk.

Hogyan kell kiszámolni a határértéket?

02
 
Hopsz, úgy tűnik nem vagy belépve, pedig itt olyan érdekes dolgokat találsz, mint például:

Határértékek kiszámolása, Polinom/polinom típusú sorozatok határértéke, Exponenciális sorozatok határértéke, Gyökös sorozatok határértéke.

Itt jön egy fantasztikus
Analízis 1 képsor.

Hozzászólások

Még nincs hozzászólás. Legyél Te az első!