23 témakör, 277 rövid és szuper érthető epizód

Ez az ütős Diszkrét matematika kurzus segít mindent azonnal megérteni és sikeresen vizsgázni. 277 rövid és szuper-érthető epizód segítségével 23 témakörön keresztül vezet végig az őrülten jó Diszkrét matematika rögös útjain. Mindezt olyan laza stílusban, mintha csak a rántotta elkészítésének problémájáról lenne szó.

Tartalomjegyzék: 

A kurzus 23 szekcióból áll: Kombinatorika, Halmazok, rendezett párok, leképezések, Matematikai logika, ítéletkalkulus, Gráfelméleti alapok, Gráfok izomorfiája és síkbarajzolhatósága, Gráfok bejárása és gráfalgoritmusok, Kromatikus szám, klikk, perfekt gráfok, Gráfparaméterek, párosítások, Hálózatok, Irányított gráfok, gráfalgoritmusok irányított gráfokban, Menger tételei, többszörös összefüggőség, Páros gráfok, párosítások, Teljes indukció, Oszthatóság, Euklideszi algoritmus & Diofantoszi egyenletek, Kongruenciák, Mátrixok, Lineáris egyenletrendszerek, Determinánsok, Komplex számok, Polinomok, Interpolációs polinomok, Csoportok, gyűrűk, testek

Kombinatorika

  • -

    Ismétlés nélküli kombinációról akkor beszélünk, ha n különböző elem közül kiválasztunk k db.-ot úgy, hogy a kiválasztott elemek sorrendjére nem vagyunk tekintettel.

  • -

    Egy adott n elemű halmaz elemeinek egy ismétlés nélküli permutációján az n különböző elem egy sorba rendezését értjük.

  • -

    Ismétlés nélküli variációról akkor beszélünk, ha n különböző elem közül kiválasztunk k db.-ot úgy, hogy a kiválasztott elemek sorrendje is számít.

  • -

    Ismétléses permutációról akkor beszélünk, ha n elem sorrendjére vagyunk kiváncsiak, de ezen elemek között vannak megegyezőek is.

  • -

    Ismétléses variációról akkor beszélünk, ha n különböző elem közül kiválasztunk k db.-ot úgy, hogy a kiválasztott elemek sorrendje is számít és egy elemet többször is választhatunk.

  • -

    Ha kör alakban helyezünk el n különböző elemet és azok sorrendjét vizsgáljuk, akkor ciklikus permutációról beszélünk.

Halmazok, rendezett párok, leképezések

  • -

    Az A és B halmazok uniója: Azon elemek halmaza, amelyek legalább az egyik halmazban benne vannak. Az A és B halmazok metszete: Azon elemek halmaza, amelyek mindkét halmazban benne vannak. Az A és B halmazok különbsége: Azon elemek halmaza, amelyek az A halmazba benne vannak, de a B halmazba nem. Az A halmaz komplementere a H alaphalmazon nézve: Az alaphalmaz azon elemeinek halmza, amelyek nincsenek benne az A-ban.

  • -

    A logikai szita formula a halmazok elemszámának meghatározását segítő képlet.

  • -

    Az első De Morgan azonosság azt mondja, hogy a metszet komplementere pont megegyezik a komplementrek uniójával. A második De Morgan azonosság pedig azt mondja, hogy az unió komplementere éppen megegyezik a komplementerek metszetével.

  • -

    Egy halmaz összes részhalmazainak halmazát hatványhalmaznak nevezzük.

  • -

    Két halmaz szimmetrikus differenciája a halmazok kétféle különbségének uniója.

  • -

    A függvény értékkészlete azoknak az elemeknek a halmaza a B halmazban, amelyek hozzá vannak rendelve valamely A halmazbeli elemekhez.

  • -

    Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.

  • -

    Az A és B halmazok Descartes-szorzata úgy működik, hogy elkészítjük az összes lehetséges rendezett párt, aminek az első elemét A-ból, a második elemét pedig B-ből vesszük, és ezeket a rendezett párokat betesszük egy halmazba.

  • -

    Az f halmazt függvénynek nevezzük, ha minden eleme rendezett pár és minden x-hez csak egy y tartozik.

Teljes indukció

  • -

    A teljes indukció egy bizonyítási módszer, ami olyan állítások bizonyítására alkalmas, melyek n pozitív egész számtól függenek.

Komplex számok

Interpolációs polinomok

  • -

    Az interpoláció egy közelítő módszer, amely a függvény ismert értékei alapján ad közelítést a nem ismert értékeire.

  • -

    A Lagrange-féle interpolációs polinom megadja azt a polinomot, amely $x_1$-ben $y_1$-et, $x_2$-ben $y_2$-t és így tovább $x_n$-ben $y_n$ értéket vesz föl.

  • -

    A Newton interpoláció első lépése, hogy elkészítjűk az úgynevezett Newton-együtthatókat. Ezt követően ezek segítségével állítjuk elő a polinomot.

  • -

    A Hermite interpoláció abban különbözőik a Lagrange és Newton féle interpolációktól, hogy az $x_1, x_2, \dots , x_n$ helyeken nem csak az eredeti polinom-függvény értékeit, hanem a deriváltjait is nézzük.

  • -

    Az interpoláció egy közelítő módszer, amely a függvény ismert értékei alapján ad közelítést a nem ismert értékeire. Ennek hibájának a megbecsléséhez van egy remek képlet.