Matek 12. osztály | mateking
 
12 témakör, 135 rövid és szuper érthető epizód
Ezt a nagyon laza Matek 12. osztály kurzust úgy terveztük meg, hogy egy csapásra megértsd a lényeget. Tudásszinttől függetlenül, teljesen az alapoktól magyarázzuk el a tananyagot, a saját ritmusodban lépésről lépésre. Így tudjuk a legbonyolultabb dolgokat is elképesztően egyszerűen elmagyarázni.
3 450 Ft fél évre

Tartalomjegyzék: 

A kurzus 12 szekcióból áll: Bizonyítási módszerek, matematikai logika, A teljes indukció (emelt szint), Számtani és mértani sorozatok, Százalékszámítás és pénzügyi számítások, Térgeometria, Sorozatok határértéke (emelt szint), Sorozatok monotonitása és korlátossága (emelt szint), Függvények határértéke és folytonossága (emelt szint), Deriválás (emelt szint), Függvények érintője (emelt szint), Függvényvizsgálat, szélsőérték feladatok (emelt szint), Az integrálás (emelt szint)

Bizonyítási módszerek, matematikai logika

A teljes indukció (emelt szint)

  • -

    A teljes indukció egy bizonyítási módszer, ami olyan állítások bizonyítására alkalmas, melyek n pozitív egész számtól függenek.

Számtani és mértani sorozatok

Százalékszámítás és pénzügyi számítások

Térgeometria

  • -

    A kúp egy gúlaszerű térbeli test, melynek alapja egy kör.

  • -

    Megnézzük, hogy mi a kúp és a henger, mit jelent a palást és az is kiderül, hogy hogyan kell kiszámolni a kúpok és hengerek térfogatát és felszínét. Aztán nézünk néhány feladatot hengerekre és kúpokra.

  • -

     Megnézzük, hogy mi a kúp és a henger, mit jelent a palást és az is kiderül, hogy hogyan kell kiszámolni a kúpok és hengerek térfogatát és felszínét. Aztán nézünk néhány feladatot hengerekre és kúpokra.

  • -

    Itt térgeometriai izgalmak kezdődnek. Megnézzük, hogy mi a gúla és mi a hasáb, mit jelent a palást és az is kiderül, hogy hogyan kell kiszámolni a gúlák és hasábok térfogatát és felszínét. Aztán nézünk néhány feladatot gúlákra és hasábokra, hengerekre és kúpokra. Megnézzük azt is, hogy egy test méreteinek változtatásával a felszíne négyzetesen, a térfogata pedig köbösen változik.

  • -

    Nézzük, hogyan kell kiszámolni a gúlák felszínét.

  • -

     Lássuk, hogyan kell kiszámolni a gúlák térfogatát.

  • -

    Itt térgeometriai izgalmak kezdődnek. Megnézzük, hogy mi a gúla és mi a hasáb, mit jelent a palást és az is kiderül, hogy hogyan kell kiszámolni a gúlák és hasábok térfogatát és felszínét. Aztán nézünk néhány feladatot gúlákra és hasábokra, hengerekre és kúpokra. Megnézzük azt is, hogy egy test méreteinek változtatásával a felszíne négyzetesen, a térfogata pedig köbösen változik.

  • -

    Na és itt jön a hasábok felszíne.

  • -

    Lássuk, hogyan kell kiszámolni a hasábok térfogatát.

  • -

    A henger olyan, mint a hasáb, csak nem sokszög a két párhuzamos lap, hanem kör.

  • -

    Képlet henger felszínére.

  • -

    Képlet henger térfogatára.

  • -

    Ha a gömböt kettévágjuk egy olyan síkkal, ami épp átmegy a középpontján, akkor a vágás során keletkező kör sugara éppen megegyezik a gömb sugarával. Ezt a kört nevezzük főkörnek.

  • -

    A gömb egy adott ponttól (középpont) egyenlő távolságra lévő pontok halmaza.

  • -

    Ha a gömb középpontját összekötjük a gömbfelület bármelyik pontjával, akkor az így keletkező szakasz hossza állandó, és ez az állandó hosszúság a gömb sugara. Ha meghosszabbítjuk ezt a szakaszt a másik irányba is, akkor egy átmérőt kapunk

  • -

    Képlet a gömb felszínére.

  • -

    Ha a gömb középpontját összekötjük a gömbfelület bármelyik pontjával, akkor az így keletkező szakasz hossza állandó, és ez az állandó hosszúság a gömb sugara.

  • -

    Képlet a gömb térfogatára.

  • -

    Ha egy gúlát az alaplap síkjával párhuzamosan metszünk el, akkor egy csonkagúlát kapunk.

  • -

    Képlet a csonkagúla felszínének kiszámítására.

  • -

    Képlet a csonkagúla térfogatának kiszámítására.

  • -

    Ha egy forgáskúpot az alaplap síkjával párhuzamosan metszünk el, akkor egy csonkakúpot kapunk.

  • -

    Képlet a csonkakúp felszínének kiszámítására.

  • -

    Képlet a csonkakúp térfogatának kiszámítására.

Sorozatok határértéke (emelt szint)

Sorozatok monotonitása és korlátossága (emelt szint)

  • -

    Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük.

  • -

    sorozatok egyik legfontosabb tulajdonsága a határértékük, ami azt jelenti, hogy mi történik a sorozattal ahogy egyre és egyre nagyobb indexű tagjait vizsgáljuk.

  • -

    Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük.

  • -

    A sorozat monotonitása lehet monton nő, monoton csökkenő, szigorúan monoton nő, szigorúan monoton csökkenő.

Függvények határértéke és folytonossága (emelt szint)

Deriválás (emelt szint)

  • -

    Függvény konstansszorosának, két függvény összegének, szorzatának és hányadosának deriválási szabályai. Összetett függvények deriválási szabálya.

  • -

    Egy szelő egyenes meredeksége a differenciahányados.

  • -

    Egy függvény érintő egyenesének meredeksége a differenciálhányados.

  • -

    Konstans deriváltja, polinomok deriválási szabálya. Az exponenciális és logaritmus függvények deriválása. Trigonometrikus függvények deriváltjai.

Függvények érintője (emelt szint)

  • -

    A függvény érintője egy olyan egyenes, amely egy függvényt pontosan egy pontban érint.

Az integrálás (emelt szint)

  • -

    Az f(x) függvény primitív függvényének jele F(x) és azt tudja, hogy ha deriváljuk, akkor visszakapjuk f(x)-et. Egy függvény primitív függvényeinek halmazát nevezzük a függvény határozatlan integráljának.

  • -

    Polinomok integrálása. Törtfüggvény integrálása. Exponenciális függvények integrálása. Trigonometrikus függvények integrálása.

  • -

    Polinomok, törtfüggvény, exponenciális függvények, trigonometrikus függvények integráljainak lineáris helyettesítései.

  • -

    A Newton-Leibniz formula egy egyszerűen használható képlet a határozott integrál kiszámításához. Ez a tétel az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.

  • -

    Ha a szorzás elvégezhető, akkor végezzük el, és utána integráljunk.

  • -

    Próbálkozzunk a tört földarabolásával és utána integráljunk.