Barion Pixel Középszintű matek érettségi | mateking
 
34 témakör, 408 rövid és szuper érthető epizód
Ezt a nagyon laza Középszintű matek érettségi kurzust úgy terveztük meg, hogy egy csapásra megértsd a lényeget. Tudásszinttől függetlenül, teljesen az alapoktól magyarázzuk el a tananyagot, a saját ritmusodban lépésről lépésre. Így tudjuk a legbonyolultabb dolgokat is elképesztően egyszerűen elmagyarázni.
4 980 Ft fél évre

Tartalomjegyzék: 

A kurzus 34 szekcióból áll: ÚJ! Kvartilisek és dobozdiagram (box plot), ÚJ! A geometriai valószínűség, ÚJ! A várható érték, ÚJ! Kamatos kamat, törlesztőjáradék, gyűjtőjáradék, ÚJ! Számrendszerek, Számtani és mértani sorozatok (16 pont), Függvényekkel kapcsolatos feladatok (9,8 pont), Térgeometria (9,8 pont), Statisztika (9,3 pont), Trigonometria, szinusztétel, koszinusztétel (9,3 pont), Valószínűségszámítás (9,1 pont), Szöveges feladatok (7,4 pont), Halmazok (6 pont), Kombinatorika (5,9 pont), Síkgeometria (4,5 pont), Százalékszámítás (3,8 pont), Gráfok (3 pont), Másodfokú egyenletek (3 pont), Koordinátageometria (2,8 pont), Számelmélet (2,6 pont), Hatványozás, exponenciális egyenletek (1,4 pont), Egyenlőtlenségek (0,5 pont), Vektorok (0,7 pont), Algebra, nevezetes azonosságok, Egyenletrendszerek, Bizonyítási módszerek, matematikai logika, A Pitagorasz-tétel, Gyökös azonosságok és gyökös egyenletek, Hatványozás, hatványazonosságok, normálalak, Logaritmus, logaritmus használata szöveges feladatokban, Mértékegységek és mértékegység-átváltás, Pontok, egyenesek, síkok, szögek, a geometria alapjai, Síkidomok, háromszögek, négyszögek, sokszögek, Egybevágósági transzformációk

ÚJ! Kvartilisek és dobozdiagram (box plot)

ÚJ! A geometriai valószínűség

  • -

    Ha egy esemény előfordulását geometriai alakzat (vonal, síkidom, test) mértékével jellemezzük, akkor geometriai valószínűségről beszélünk.

ÚJ! A várható érték

ÚJ! Kamatos kamat, törlesztőjáradék, gyűjtőjáradék

  • -

    A kamatos kamat számításának képlete.

  • -

    Ha a tartozásunk minden hónapban kamatozik is, akkor törlesztőrészlet számítással tudjuk kiszámolni mennyit is kell havonta fizetnünk...

  • -

    Ha bizonyos időközönként fix pénzösszegeket fizetünk be a bankba, ami aztán kamatozik is, akkor gyűjtőjáradék számítással számolhatjuk ki, mennyi pénzünk is lesz...

ÚJ! Számrendszerek

Számtani és mértani sorozatok (16 pont)

Függvényekkel kapcsolatos feladatok (9,8 pont)

Térgeometria (9,8 pont)

  • -

    Itt térgeometriai izgalmak kezdődnek. Megnézzük, hogy mi a gúla és mi a hasáb, mit jelent a palást és az is kiderül, hogy hogyan kell kiszámolni a gúlák és hasábok térfogatát és felszínét. Aztán nézünk néhány feladatot gúlákra és hasábokra, hengerekre és kúpokra. Megnézzük azt is, hogy egy test méreteinek változtatásával a felszíne négyzetesen, a térfogata pedig köbösen változik.

  • -

    A kúp egy gúlaszerű térbeli test, melynek alapja egy kör.

  • -

    Itt térgeometriai izgalmak kezdődnek. Megnézzük, hogy mi a gúla és mi a hasáb, mit jelent a palást és az is kiderül, hogy hogyan kell kiszámolni a gúlák és hasábok térfogatát és felszínét. Aztán nézünk néhány feladatot gúlákra és hasábokra, hengerekre és kúpokra. Megnézzük azt is, hogy egy test méreteinek változtatásával a felszíne négyzetesen, a térfogata pedig köbösen változik.

  • -

    A kocka térfogata az oldalélének köbe.

  • -

    Kocka felszíne az oldallapjai területének összege.

  • -

    A henger olyan, mint a hasáb, csak nem sokszög a két párhuzamos lap, hanem kör.

  • -

    Lássuk, hogyan kell kiszámolni a hasábok térfogatát.

  • -

    Na és itt jön a hasábok felszíne.

  • -

    Képlet henger térfogatára.

  • -

    Képlet henger felszínére.

  • -

     Lássuk, hogyan kell kiszámolni a gúlák térfogatát.

  • -

    Nézzük, hogyan kell kiszámolni a gúlák felszínét.

  • -

     Megnézzük, hogy mi a kúp és a henger, mit jelent a palást és az is kiderül, hogy hogyan kell kiszámolni a kúpok és hengerek térfogatát és felszínét. Aztán nézünk néhány feladatot hengerekre és kúpokra.

  • -

    Megnézzük, hogy mi a kúp és a henger, mit jelent a palást és az is kiderül, hogy hogyan kell kiszámolni a kúpok és hengerek térfogatát és felszínét. Aztán nézünk néhány feladatot hengerekre és kúpokra.

  • -

    Négyzetalapú gúla térfogata könnyebben kiszámolható.

  • -

    Négyzetalapú gúla felszíne könnyebben kiszámolható.

  • -

    A gömb egy adott ponttól (középpont) egyenlő távolságra lévő pontok halmaza.

  • -

    Képlet a gömb térfogatára.

  • -

    Képlet a gömb felszínére.

  • -

    Ha a gömböt kettévágjuk egy olyan síkkal, ami épp átmegy a középpontján, akkor a vágás során keletkező kör sugara éppen megegyezik a gömb sugarával. Ezt a kört nevezzük főkörnek.

  • -

    Ha a gömb középpontját összekötjük a gömbfelület bármelyik pontjával, akkor az így keletkező szakasz hossza állandó, és ez az állandó hosszúság a gömb sugara.

  • -

    Ha a gömb középpontját összekötjük a gömbfelület bármelyik pontjával, akkor az így keletkező szakasz hossza állandó, és ez az állandó hosszúság a gömb sugara. Ha meghosszabbítjuk ezt a szakaszt a másik irányba is, akkor egy átmérőt kapunk

  • -

    Ha egy forgáskúpot az alaplap síkjával párhuzamosan metszünk el, akkor egy csonkakúpot kapunk.

  • -

    Képlet a csonkakúp térfogatának kiszámítására.

  • -

    Képlet a csonkakúp felszínének kiszámítására.

  • -

    Ha egy gúlát az alaplap síkjával párhuzamosan metszünk el, akkor egy csonkagúlát kapunk.

  • -

    Képlet a csonkagúla térfogatának kiszámítására.

  • -

    Képlet a csonkagúla felszínének kiszámítására.

  • -

    A négyzet alapú csonkagúla térfogata egyszerűbben is kiszámolható.

  • -

    A csonkagúla felszíne könnyebben kiszámolható, ha négyzetalapú.

Statisztika (9,3 pont)

  • -

    A módusz a leggyakoribb érték.

  • -

    A medián a növekvő sorba rendezett adatsor középső értéke.

  • -

    Az átlag az összes elem összege osztva az elemszámmal.

  • -

    Az átlagtól való átlagos eltérést szórásnak nevezzük és egy szigma nevű görög betűvel jelöljük.

  • -

    Az adatsor első felének a felezőpontja az alsó kvartilis.

  • -

    Az adatsor második felének a felezőpontja a felső kvartilis.

  • -

    A kvartilisek és a medián azt szemlélteti, hogyan oszlanak el az adatsorban szereplő adatok.

  • -

    A relatív szórás azt mondja meg, hogy a szórás az átlagnak hány százaléka:

Trigonometria, szinusztétel, koszinusztétel (9,3 pont)

  • -

    Derékszögű háromszögben a szinusz a szöggel szemközti befogó és átfogó hányadosa. A koszinusz a szög melleti befogó és átfogó hányadosa. A tangens a szöggel szemközti befogó és szög melletti befogó hányadosa.

  • -

    Megnézzük, hogy derékszögű háromszögekben mit jelent a koszinusz. Mire jó a a koszinusz, mire lehet használni? Geometriai feladatok megoldása koszinusz szögfüggvény segítségével.

  • -

    Megnézzük, hogy derékszögű háromszögekben mit jelent a szinusz. Mire jó a szinusz, mire lehet használni? Geometriai feladatok megoldása szinusz szögfüggvény segítségével.

  • -

    Derékszögű háromszögben egy szög tangense a szöggel szemközti befogó és szög melletti befogó hányadosa.

  • -

    A háromszög területe kiszámítható a két oldal és a közrefogott szög szinuszának szorzataként, osztva 2-vel.

  • -

    Ha a kört kettéosztjuk egy húrjával, akkor körszeleteket kapunk. A körszelet területe az őt magába foglaló körcikk és egyenlőszárú háromszög különbsége.

  • -

    A Szinusz tétel szerint tetszőleges háromszögben bármely oldalak aránya megegyezik a velük szemközti szögek szinuszának arányával.

  • -

    A Koszinusz tétel szerint tetszőleges háromszögben egy tetszőleges oldal négyzete egyenlő a másik két oldal négyzetének összege és a másik két oldal illetve a kiválasztott oldallal szemközti szög koszinuszának szorzatának különbségével.

Valószínűségszámítás (9,1 pont)

Szöveges feladatok (7,4 pont)

Halmazok (6 pont)

  • -

    Az A és B halmazok uniója: Azon elemek halmaza, amelyek legalább az egyik halmazban benne vannak. Az A és B halmazok metszete: Azon elemek halmaza, amelyek mindkét halmazban benne vannak. Az A és B halmazok különbsége: Azon elemek halmaza, amelyek az A halmazba benne vannak, de a B halmazba nem. Az A halmaz komplementere a H alaphalmazon nézve: Az alaphalmaz azon elemeinek halmza, amelyek nincsenek benne az A-ban.

  • -

    A logikai szita formula a halmazok elemszámának meghatározását segítő képlet.

  • -

    Az első De Morgan azonosság azt mondja, hogy a metszet komplementere pont megegyezik a komplementrek uniójával. A második De Morgan azonosság pedig azt mondja, hogy az unió komplementere éppen megegyezik a komplementerek metszetével.

Kombinatorika (5,9 pont)

  • -

    Egy adott n elemű halmaz elemeinek egy ismétlés nélküli permutációján az n különböző elem egy sorba rendezését értjük.

  • -

    $n$ faktoriálisán az $n$-nél kisebb vagy egyenlő pozitív egész számok szorzatát értjük.

  • -

    Ismétlés nélküli variációról akkor beszélünk, ha n különböző elem közül kiválasztunk k db.-ot úgy, hogy a kiválasztott elemek sorrendje is számít.

  • -

    Ismétlés nélküli kombinációról akkor beszélünk, ha n különböző elem közül kiválasztunk k db.-ot úgy, hogy a kiválasztott elemek sorrendjére nem vagyunk tekintettel.

  • -

    Ismétléses permutációról akkor beszélünk, ha n elem sorrendjére vagyunk kiváncsiak, de ezen elemek között vannak megegyezőek is.

  • -

    Ismétléses variációról akkor beszélünk, ha n különböző elem közül kiválasztunk k db.-ot úgy, hogy a kiválasztott elemek sorrendje is számít és egy elemet többször is választhatunk.

  • -

    Ha kör alakban helyezünk el n különböző elemet és azok sorrendjét vizsgáljuk, akkor ciklikus permutációról beszélünk.

Síkgeometria (4,5 pont)

  • -

    Pont, egyenes és sík a tér elemei, alapfogalmak, nem definiáljuk őket, hanem a szemléletből kialakult jelentésükre hagyatkozunk.

  • -

    Két pont távolsága a pontokat összekötő szakasz hossza.

  • -

    Hogyan számíthatjuk ki pont és sík távolságát?

  • -

    Hogyan számíthatjuk ki pont és egyenes távolságát?

  • -

    Hogyan számíthatjuk ki két egyenes távolságát?

  • -

    Hogyan számítjuk egyenes és sík távolságát?

  • -

    Hogyan számíthatjuk ki két sík távolságát?

  • -

    Két ponttól azonos távolságra lévő pontok halmaza. Három ponttól azonos távolságra lévő pontok halmaza. Két metsző egyenestől azonos távolságra lévő pontok halmaza.

  • -

    A legszabályosabb négyszög a négyzet. A négyzet oldalai egyenlő hosszúak és minden szöge derékszög.

  • -

    Téglalap olyan négyszög, aminek minden szöge derékszög. Vagyis az oldalak nem feltétlen egyenlő hosszúak.

  • -

    Rombusz egy olyan négyszög, amelynek minden oldala egyforma hosszú. Vagyis egy rombusznál az oldalak egyenlő hosszúságúak, de a szögeknek nem kell derékszögnek lenniük.

  • -

    A paralelogramma olyan négyszög, aminek van két párhuzamos oldalpárja. Nagyon sok ilyen tulajdonságú négyszög van. Ilyenek a négyzetek, a téglalapok és a rombuszok.

  • -

    A trapéz olyan négyszög, aminek van legalább egy párhuzamos oldalpárja.

  • -

    A deltoid az a négyszög, amelynek átlói merőlegesek egymásra és legalább az egyik átló szimmetriatengely. 

  • -

    Ha egy kör átmérőjét összekötjük a körvonal egy másik, tetszőleges C pontjával, akkor a C csúcsnál derékszöget kapunk.

  • -

    A kerületi szög egy körben lévő szög úgy, hogy a szög csúcsa a körvonal egy pontja, szárai pedig vagy a kör két húrja, vagy egy húrja és egy érintője.

  • -

    Egy körben egy adott ívhez tartozó bármely középponti szög nagysága kétszerese az ugyanazon ívhez tartozó kerületi szög nagyságának.

  • -

    Egy kör adott ívéhez tartozó kerületi szögek mind ugyanakkorák.

  • -

    A húrnégyszög egy olyan négyszög, amelynek minden oldala ugyanannak a körnek egy-egy húrja.

  • -

    Két szimmetrikus körív, amely megadja azokat a pontokat, amik alatt egy szakasz azonos szögben látható.

  • -

    Kör kerületének és területének képletei.

  • -

    Mi az a körcikk, és hogyan számolható ki az ívhossza és területe.

  • -

    Ha egy szög szárait párhuzamos egyenesekkel metsszük, akkor az egyik szögszáron keletkező szakaszok aránya megegyezik a másik szögszáron keletkező megfelelő szakaszok arányával.

  • -

    A középpontos hasonlósági transzformációhoz adott egy O pont, ez a középpont, és egy lambda nem nulla valós szám, ez a hasonlóság aránya.

  • -

    Háromszögek hasonlóságának 4 esete.

  • -

    Derékszögű háromszögben az átfogó magasságának talppontja az átfogót két olyan részre bontja, melyeknek a mértani közepe a magasság:

  • -

    Derékszögű háromszög egy befogója mértani közepe az átfogónak és a befogóra eső vetületének.

  • -

    Hasonló alakzatok területe négyzetesen, térfogata köbösen aránylik egymáshoz.

Százalékszámítás (3,8 pont)

  • -

    A százalékalap az a szám, amihez a százalékszámítás során viszonyítunk. Ez jelenti mindig a 100%-ot. Ha például egy osztályba 20 gyerek jár és közülük 8 lány, 12 fiú, akkor a 20 gyerek lesz a 100%, aminek valahány százaléka lány és valahány százaléka fiú. 

  • -

    A százalékláb a százalékszámításos feladatban a százalék. Ennyi százalékát kell kiszámítani a százalékalapnak.

  • -

    A százalékérték a százalékalap és a százalékláb szorzata, tehát a végeredmény.

  • -

    A százalékértéket megkapjuk úgy, hogy a százalékalapot és a százaléklábat összeszorozzuk.

  • -

    A százalékalap a százalérték és a százalékláb hányadosa.

  • -

    A százalékláb a százalékérték és a százalékalap hányadosa.

  • -

    Hogyan írjuk fel, ha egy értéket x %-al növeltünk, vagy csökkentettünk.

Gráfok (3 pont)

  • -

    A gráf csúcsokból és azokat összekötő élekből áll.

  • -

    Egy gráf összefüggő, ha bármelyik csúcsából el lehet jutni bármelyik másik csúcsába élek mentén.

  • -

    A gráf egy csúcsának fokszáma a gráf e csúcsában összefutó élek száma.

  • -

    Egy gráfban körnek nevezünk egy olyan utat, amely csupa különböző csúcsokon és éleken haladva visszavezet a kiinduló csúcsába.

  • -

    Ha egy gráfban nincs kör, de maga a gráf összefüggő, akkor fának nevezzük.

  • -

    Azokat a gráfokat, ahol minden csúcs mindegyikkel össze van kötve, teljes gráfnak hívjuk.

  • -

    Egy gráf egyszerű, ha nincs benne sem többszörös él, sem hurokél.

  • -

    Egy gráf Euler-köre olyan zárt élsorozat, amely a gráf összes élét pontosan egyszer tartalmazza.

Másodfokú egyenletek (3 pont)

Koordinátageometria (2,8 pont)

  • -

    Hogyan írjuk föl egy kör egyenletét? A kör kanonikus egyenlete, a kör középpontja és sugara, kör és egyenes metszéspontja.

Számelmélet (2,6 pont)

  • -

    Mit jelent az, hogy egy szám osztója egy másik számnak.

  • -

    Ha egy természetes számot osztunk egy másik nem nulla természetes számmal és az nincs meg benne egésszer, akkor maradék is lesz.

  • -

    Egy szám akkor osztható 2-vel, ha páros.

  • -

    Egy szám akkor osztható 3-mal, ha a számjegyeinek összege osztható 3-mal.

  • -

    Egy szám akkor osztható 4-gyel, ha az utolsó két jegyéből alkottot szám osztható 4-gyel.

  • -

    Egy szám akkor osztható 5-tel, ha az utolsó számjegye 0 vagy 5.

  • -

    6-tal azok a számok oszthatók, amik 2-vel és 3-mal is oszthatók.

  • -

    Egy szám akkor osztható 9-cel, ha a számjegyeinek összege osztható 9-cel.

  • -

    10-zel azok a számok oszthatók, amik 0-ra végződnek.

  • -

    11-gyel azok a számok oszthatók, amik egy nagyon vicces dolgot tudnak.

  • -

    Két számok legnagyobb közös osztója az a szám, amelyik mindkét számot osztja és ezek közül a legnagyobb.

  • -

    Két szám relatív prímek, ha a legnagyobb közös osztójuk 1.

  • -

    Néhány izgalmas oszthatósági szabály.

  • -

    Azokat az 1-től különböző pozitív egész számokat, amelyeknek az 1-en és önmagukon kívül nincsen más pozitív egész osztója, prímeknek nevezzük.

  • -

    A nullától és az egytől különböző összes $n$ pozitív egész szám felbontható prímek szorzatára a sorrendtől eltekintve egyértelműen.

  • -

    A legkisebb közös többszörös megtalálásának lépései.

Hatványozás, exponenciális egyenletek (1,4 pont)

  • -

    Készítünk egy szuper-érthető összefoglalót a hatványazonosságokból. Megnézzük, hogyan kell a hatványazonosságokat használni. Megnézzük mi az az exponenciális függvény és hogyan kell ábrázolni.

  • -

    Az exponenciális függvények meglehetősen fontosak a matematikában, sőt nem csak a matematikában. Itt jönnek az exponenciális függvények.

  • -

    Mik azok az exponenciális egyenletek? Hogyan kell megoldani egy exponenciális egyenletet? Törtes exponenciális egyenletek. Másodfokú egyenletre vezető exponenciális egyenletek.

  • -

    Mik azok az exponenciális egyenlőtlenségek? Hogyan kell megoldani egy exponenciális egyenlőtlenséget?

Egyenlőtlenségek (0,5 pont)

  • -

    Hogyan kell megoldani egyenlőtlenségeket? Mi a különbség egyenletek és egyenlőtlenségek megoldási módszerei között? Egyenlőtlenségek megoldása számegyenesen előjel ábrázolással.

  • -

    Az elsőfokú egyenlőtlenségeknél még izgalmasabbak a másodfokú egyenlőtlenségek.

Vektorok (0,7 pont)

  • -

    A vektor egy irányított szakasz.

  • -

    Vektorok összeadásakor összeadjuk az x koordinátákat és összeadjuk az y koordinátákat. Kivonáskor vesszük az x koordináták különbségét és az y koordináták különbségét.

  • -

    Egy vektor hosszát megkapjuk, ha vesszük a koordinátái négyzetösszegének a gyökét. Két pont távolsága az őket összekötő vektor hossza.

  • -

    Két pont közti vektor a végpontba mutató helyvektor minusz a kezdőpontba mutató helyvektor.

Algebra, nevezetes azonosságok

  • -

    A zárójel egy fontos matematikai szimbólum, ami a műveleteknél a műveletek sorrendjét befolyásolja. A zárójelben szereplő műveleteket mindig előbb kell elvégezni, mint a többi műveletet.

  • -

    Ha több művelet szerepel egymás mellett, akkor a műveleti sorrend szerint kell elvégeznünk őket.

    A műveleti sorrendben a zárójel az első.

    Ezt követik a szorzás és az osztás. Ha több szorzás és osztás van, akkor balról jobbra kell őket elvégezni.

    Az utolsó szint az összeadás és kivonás, és itt is ha több is van belőlük, akkor balról jobbra kell elvégezni.

  • -

    Hogyan végezzünk műveleteket betűs kifejezésekkel.

  • -

    Itt jön néhány példa arra, hogyan lehet kiemeléssel szorzattá alakítani.

  • -

    Törtek és algebrai törtek egyszerűsítésének módszerei.

  • -

    Ha a törtekből nem lett volna elég, itt jönnek az algebrai törtek.

  • -

    Kéttagú összegek és különbségek négyzetre emelése. Két négyzet különbségének szorzata.

  • -

    Kéttagú összegek és különbségek köbre emelése.

  • -

    Kéttagú összegek n-edik hatványra emelésének képlete.

  • -

    Az (a+b) hatványainak általánosítására egy képlet.

  • -

    Egy kifejezés értelmezési tartományán azt a legbővebb halmazt értjük, ahol értelmezve van.

Egyenletrendszerek

  • -

    A behelyettesítő módszer az egyenletrendszerek megoldásának egyik technikája, ami során az egyik ismeretlent kifejezzük a másikkal.

  • -

    Az egyenlő együtthatók módszere egy megoldási technika az egyenletrendszerekhez, ami során a két egyenletet összeadjuk vagy kivonjuk egymásból.

Bizonyítási módszerek, matematikai logika

  • -

    Az univerzális kvantor egy jelölése a "minden" kifejezésnek.

  • -

    Az egzisztenciális kvantor egy jelölése a "létezik" vagy "van olyan" kifejezésnek.

  • -

    Egy $A$ kijelentés negációja az a kijelentés, amely akkor igaz, ha $A$ hamis és akkor hamis, ha $A$ igaz.

  • -

    Az állítás (vagy kijelentés) olyan kijelentő mondat, amelyről egyértelműen eldönthetjük, hogy az igaz vagy hamis.

A Pitagorasz-tétel

Gyökös azonosságok és gyökös egyenletek

  • -

    Egy a nem negatív szám négyzetgyöke az a nem negatív szám, aminek a négyzete a.

  • -

    Gyökös kifejezések szorzása és osztása közti összefüggések.

  • -

    Egy a szám köbgyöke az a szám, aminek a köbe a.

  • -

    Köbgyökös kifejezések szorzása és osztása közti összefüggések.

  • -

    A gyökvonás másképpp viselkedik páros, illetve páratlan gyökkitevő esetén, így kétféle definíciónk lesz.

  • -

    Megnézzük, hogy milyen izgalmak fordulhatnak elő a gyökös egyenletek világában. Hogyan kell megoldani egy gyökös egyenletet? Mikor lehet egy egyenletet négyzetre emelni? Milyen kikötéseket kell tenni egy gyökös egyenlet megoldásánál? Törtes gyökös egyenletek. Másodfokú egyenletre vezető gyökös egyenletek.

Hatványozás, hatványazonosságok, normálalak

  • -

    A hatványozás a szám önmagával vett szorzatait rövidíti.

  • -

    Ha azonos alapú hatványokat szorzunk, akkor a kitevők összeadódnak.

  • -

    Ha azonos alapú hatványokat osztunk, akkor a kitevők kivonódnak.

  • -

    Hatvány hatványa a kitevők szorzata.

  • -

    Minden nem nulla szám nulladik hatványa 1.

  • -

    Egy nem nulla szám negatív egész kitevőjű hatványát úgy számolhatjuk ki, hogy a reciprokát a kitevő ellentettjére emeljük.

  • -

    Ha egy szorzat mindkét tényezője ugyanarra a hatványra van emelve, akkor a hatványt leírhatjuk csak egyszer zárójellel.

  • -

    Ha egy törtnek a számlálója és nevezője is ugyanarra a hatványra van emelve, akkor a hatványt leírhatjuk csak egyszer zárójellel.

  • -

    A túl nagy vagy éppen túl pici számok leírására találták ki a normálalakot.

Logaritmus, logaritmus használata szöveges feladatokban

  • -

    Itt végre szuper-érthetően kiderül, hogy mi az a logaritmus. Készítünk egy gyors kis összefoglalót a logaritmus azonosságairól. Megnézzük, hogyan kell a logaritmus azonosságokat használni. Megnézzük mi az a logaritmus függvény és hogyan kell ábrázolni.

  • -

    Készítünk egy szuper-érthető összefoglalót a logaritmus azonosságokról. Megnézzük, hogyan kell az azonosságokat használni, milyen kikötéseket kell tenni a logaritmikus kifejezéseknél, hogyan néz ki a logaritmus függvény.

Mértékegységek és mértékegység-átváltás

Pontok, egyenesek, síkok, szögek, a geometria alapjai

  • -

    Pont, egyenes és sík a tér elemei, alapfogalmak, nem definiáljuk őket, hanem a szemléletből kialakult jelentésükre hagyatkozunk.

  • -

    Két pont közti részt szakasznak nevezzük.

  • -

    Ha egy síkot egy egyenessel kettévágunk, akkor két félsík keletkezik.

  • -

    Ha a teret egy síkkal két részre vágjuk, akkor két féltér keletkezik.

  • -

    Két félegyenes által közrezárt belső tartományokat szögnek nevezzük.

    A szög csúcsa a két félegyenes metszéspontja, a szög szárai pedig a félegyenesek. A belső részt szögtartománynak is nevezzük.

  • -

    Ha egy szög 0° és 90° közé esik, akkor hegyesszögnek nevezzük.

  • -

    Ha egy szög pontsoan $90°$-os, akkor derékszögnek is nevezzük.

  • -

    Ha egy szög $90°$ és $180°$ közé esik, akkor tompaszögnek nevezzük.

  • -

    Ha egy szög pontosan $180°$-os, akkor egyenesszögnek is nevezzük.

  • -

    Ha egy szög $180°$ és $360°$ közé esik, akkor homorúszögnek nevezzük.

  • -

    Két pont távolsága a pontokat összekötő szakasz hossza.

  • -

    Pont és egyenes távolságának leméréséhez először a pontból merőlegest kell állítanunk az egyenesre.

    A távolság pedig ennek a szakasznak a hossza.

  • -

    Pont és sík távolságának leméréséhez először a pontból merőlegest kell állítanunk a síkra.

    A pont és sík távolsága pedig ennek a szakasznak a hossza.

  • -

    Ha a két egyenes metszi egymást, akkor a távolságuknak nincs sok értelme vagy 0.

    Ha a két egyenes egymással párhuzamos, akkor a távolságukat úgy kapjuk meg, hogy az egyik egyenes tetszőleges pontjából merőlegest bocsátunk a másik egyenesre.

    És a két egyenes távolsága ennek a merőleges szakasznak a hossza.

  • -

    Ha az egyenesek különböző síkokban futnak, úgy hívjuk őket, hogy kitérő egyenesek.

  • -

    Ha a két sík metszi egymást, olyankor egy egyenesben metszik egymást és a távolságuknak nincs sok értelme vagy 0.

    Ha a két sík párhuzamos, akkor a két sík távolságát úgy kapjuk meg, hogy veszünk az egyik síkon egy tetszőleges pontot, a pontbl merőlegest állítunk a síkra, és a távolságuk ennek a szakasznak a hossza.

  • -

    Két ponttól azonos távolságra lévő pontok halmaza. Három ponttól azonos távolságra lévő pontok halmaza. Két metsző egyenestől azonos távolságra lévő pontok halmaza.

  • -

    Ha két szögben a szögszárak egymással párhuzamosak és egyforma irányúak is, akkor ezeket a szögeket egyállású szögeknek nevezzük.

  • -

    Ha két szögben a szögszárak egymással párhuzamosak, de irányuk ellentétes, akkor ezeket a szögeket váltószögeknek nevezzük.

  • -

    Ha két váltószöget a csúcsuknál összeillesztünk, akkor ezeket a szögeket csúcsszögeknek nevezzük.

  • -

    Ha két szög szárai párhuzamosak és az egyik száruk közös, akkor ezeket a szögeket kiegészítő szögnek nevezzük.

  • -

    Ha két szög 90 fokra egészíti ki egymást, akkor pótszögeknek hívjuk őket.

Síkidomok, háromszögek, négyszögek, sokszögek

  • -

    Síkidomnak nevezzük a sík zárt vonalakkal körülhatárolt részét.

  • -

    Azokat a síkidomokat, amelyek határoló vonalai csak egyenes szakaszok, sokszögeknek nevezzük.

  • -

    A konkáv síkidom az, amelyikben el lehet bújni.

  • -

    A konvex síkidom az, amelyikbe nem lehet elbújni.

  • -

    Egy sokszöget szabályosnak nevezünk, ha minden oldala és minden belső szöge egyforma.

  • -

    Sokszögnek nevezzük azokat a síkidomokat, melyeket véges sok, egymáshoz csatlakozó egyenes szakaszból álló zárt görbe ( töröttvonal ) határol. Ezeket az egyenes szakaszokat nevezzük a sokszög oldalainak. 

  • -

    Sokszögnek nevezzük azokat a síkidomokat, melyeket véges sok, egymáshoz csatlakozó egyenes szakasz alkotta zárt görbe határol. Ezeket a szakaszokat oldalaknak, vagy másként oldaléleknek nevezzük, és azokat a pontokat, ahol az oldalélek találkoznak, a sokszög csúcsainak hívjuk.

  • -

    A sokszögek nem szomszédos csúcsait összekötő szakaszokat a sokszög átlójának nevezzük.

  • -

    Az egyenlőszárú háromszögben van két egyforma hosszú oldal.

  • -

    Szabályos háromszögnek minden oldala és minden szöge egyenlő (tehát a szögek 60°-osak).

  • -

    Azok a háromszögek, amelyeknek van 90°-os szöge.

  • -

    A hegyesszögű háromszögek minden szöge hegyesszög.

  • -

    A tompaszögű háromszögek azok, amelyeknek van egy tompaszöge.

  • -

    A háromszög egyenlőtlenség szerint minden háromszög bármelyik oldalának rövidebbnek kell lennie, mint a másik két oldal összege.

  • -

    A magasságvonal a háromszög egy csúcsából a szemközti oldal egyenesére bocsátott merőleges. A magasságvonalak metszéspontja a magasságpont.

  • -

    A háromszög súlyvonala a csúcsot a szemközti oldal felezőpontjával összekötő szakasz. Ezek metszéspontja a súlypont.

  • -

    A háromszög köré írható körének középpontja az oldalfelezőmerőlegesei metszéspontja. Hogyan lehet megszerkeszteni egy háromszög köré írható körét

  • -

    A háromszög belső szögfelezőinek metszéspontja a háromszög köré írható körének középpontja.

  • -

    Ha egy háromszög oldalfelezőpontjait összekötjük, akkor a háromszög középvonalait kapjuk.

  • -

    Néhány képlet háromszögek területére. A jól ismert klasszikus területképlet mellett nézünk még két másikat is.

  • -

    A Hérón-képletet akkor használjuk, ha ismert a háromszög mindhárom oldala.

  • -

    A legszabályosabb négyszög a négyzet. A négyzet oldalai egyenlő hosszúak és minden szöge derékszög.

  • -

    Téglalap olyan négyszög, aminek minden szöge derékszög. Vagyis az oldalak nem feltétlen egyenlő hosszúak.

  • -

    Rombusz egy olyan négyszög, amelynek minden oldala egyforma hosszú. Vagyis egy rombusznál az oldalak egyenlő hosszúságúak, de a szögeknek nem kell derékszögnek lenniük.

  • -

    A paralelogramma olyan négyszög, aminek van két párhuzamos oldalpárja. Nagyon sok ilyen tulajdonságú négyszög van. Ilyenek a négyzetek, a téglalapok és a rombuszok.

  • -

    A trapéz olyan négyszög, aminek van legalább egy párhuzamos oldalpárja.

  • -

    A deltoid az a négyszög, amelynek átlói merőlegesek egymásra és legalább az egyik átló szimmetriatengely. 

Egybevágósági transzformációk

  • -

    A tengelyes tükrözés során egy egyenesre tükrözünk, amit tengelynek nevezünk.

  • -

    Egy alakzatot vagy sokszögek tengelyesen szimmetrikusnak nevezünk, ha van olyan tengelyes tükrözés, aminek a hatására a tükörképe önmaga.

  • -

    Hogyan kell megszerkeszteni egy alakzat középpontosan tükrözött képét, és mik a középpontos tükrözés tulajdonságai.

  • -

    Egy alakzat vagy sokszög akkor középpontosan szimmetrikus, ha van olyan középpontos tükrözés, aminek hatására a tükörképe önmaga lesz.

  • -

    A pont körüli forgatáshoz kell egy pont, ami körül forgatunk, na és persze egy szög.

  • -

    Egy alakzatot vagy sokszöget forgás-szimmetrikusnak nevezünk, hogyha van olyan O pont, ami körül egy 0 és 360 fok közé eső szöggel elforgatva a sokszöget önmagába tudjuk forgatni.

  • -

    Az eltolás során az alakzat lényegében ugyanaz marad, csak kicsit arrébb kerül.

  • -

    Két alakzat akkor egybevágó, ha van olyan egybevágósági transzformáció, ami az egyiket a másikba viszi.

  • -

    Háromszögek egybevágóságának 4 esete.