18 témakör, 217 rövid és szuper érthető epizód

Ez az ütős Lineáris algebra kurzus segít mindent azonnal megérteni és sikeresen vizsgázni. 217 rövid és szuper-érthető epizód és 5 teszt segítségével 18 témakörön keresztül vezet végig az őrülten jó Lineáris algebra rögös útjain. Mindezt olyan laza stílusban, mintha csak a rántotta elkészítésének problémájáról lenne szó.

Tartalomjegyzék: 

A kurzus 18 szekcióból áll: Mátrixok és vektorok, Egy kis geometria, Vektorterek, független és összefüggő vektorok, Lineáris egyenletrendszerek, mátrixok rangja és inverze, Determináns, sajátérték, sajátvektor, Lineáris leképezések, Síkbeli és térbeli leképezések és mátrixaik, Egyenletrendszerek optimális megoldása, pszeudoinverz, Ortogonális mátrixok, Gram-Schmidt ortogonalizáció, Mátrixok LU-felbontása és QR-felbontása, Iterációs módszerek egyenletrendszerek megoldására, Komplex számok, Polinomok, Interpolációs polinomok, Oszthatóság, Euklideszi algoritmus, Diofantoszi egyenletek, Kongruenciák, Euler-Fermat tétel, Csoportok, gyűrűk, testek

MÁTRIXOK

VEKTOROK

EGY KIS GEOMETRIA

VEKTORTEREK

  • Az axiómák - Végre valami izgalom...
  • Koordináták - A valós feletti n dimenziós vektortér jele Rn ahol n a vektorok koordinátáinak számát jelöli.
  • Lineárisan független vektorok - Egy vektorrendszer elemei lineárisan függetlenek, ha egyik vektor sem állítható elő a többi segítségével.
  • Lineárisan összefüggő vektorok - Egy vektorrendszer elemei lineárisan összefüggők, ha van olyan vektor közöttük, amelyik előállítható a többi vektor segítségével.
  • Generátorrendszer - Vektoroknak egy halmaza, amely segítségével minden egyéb vektortérbeli vektor előállítható. Lássuk hogyan.
  • Bázis - A lineárisan független generátorrendszer.
  • Alterek - W altér V-ben, ha részhalmaza és maga is vektortér a V-beli műveletekre. Nos ez remek, de nézzük meg, mit is jelet mindez.
  • Rang - Vektorrendszer rangja és mátrix rangja.
  • Gram-Schmidt ortogonalizáció - Egy remek délutáni program, amivel egy bázisból olyan bázist lehet fabrikálni, ahol a bázisvektorok egymásra merőlegesek.

LINEÁRIS EGYENLETRENDSZEREK

A DETERMINÁNS, SAJÁTÉRTÉK, SAJÁTVEKTOR

  • A determináns definíciója - A determináns úgy működik, hogy minden négyzetes mátrixból csinál egy valós számot. Hogy miért, és, hogy hogyan, az mindjárt kiderül.
  • Sarrus szabály - Egy nem túl jó módszer a determináns kiszámolására.
  • A kifejtési tétel - Egy túl jó módszer a determináns kiszámolására.
  • Szinguláris és invertálható mátrixok - Azokat a mátrixokat nevezzük szingulárisnak, amelyek determinánsa nulla. Regulárisnak pedig azokat, amelyeknek nem nulla.
  • A determináns tulajdonságai - Remek tulajdonságai vannak a determinánsoknak.
  • Sajátvektor - Egy mátrix sajátvektora egy olyan nem nullvektor, ami azt tudja, hogy megszorozva a mátrixszal az eredeti vektor skalárszorosát kapjuk. Ez igazán remek, de, hogy pontosan miért, nos ez mindjárt kiderül.
  • Sajátérték - Egy mátrix sajátértéke egy valós szám, amely azt mondja meg, hogy a sajátvektor hányszorosát kapjuk akkor, ha azt a mátrixszal szorozzuk.
  • Karakterisztikus egyenlet - A sajátértékek kiszámolásához szükséges egyenlet.
  • A diagonális alak - Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix diagonális alakját. Lássuk ez miért ilyen roppant fontos.
  • Mátrixok definitsége - Hát ez is egy érdekes ügy.
  • Kvadratikus alakok - Éjszaka nem ajánlatos összefutni velük az utcán...
  • Kvadratikus alakok definitsége - A kvadratikus alakok mátrixa segít eldönteni a definitséget.

LINEÁRIS LEKÉPEZÉSEK

Mátrixok és vektorok

  • -

    mátrixok rendkívül barátságosak. Egy nXk-as mátrix tulajdonképpen nem más, mint egy táblázat, aminek n darab sora és k darab oszlopa van.

  • -

    Ha egy mátrixot osztunk egy számmal, akkor a mátrix minden elemét osztani kell a számmal.

  • -

    Ha egy mátrixot egy számmal szorzunk, akkor a mátrix összes elemét meg kell szorozni a számmal.

  • -

    Két mátrix kivonásakor kivonjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet kivonni egymásból, ha ugyanannyi soruk és oszlopuk van.

  • -

    Két mátrix összeadásakor összeadjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet összeadni, ha ugyanannyi soruk és oszlopuk van.

  • -

    Két mátrix szorzata akkor létezik, ha a bal oldali mátrix oszlopainak száma megegyezik a jobb oldali mátrix sorainak számával. Az eredménymátrix i-edik sorának j-edik elemét úgy kapjuk, hogy a bal oldali mátrix i-edik sorát skalárisan szorozzuk a jobb oldali mátrix j-edik oszlopával. (Tehát az első elemet az elsővel, a másodikat a másodikkal stb. szorozzuk, majd összeadjuk)

  • -

    A mátrix összeadás kommutatív és asszociatív.

  • -

    A mátrixszorzás nem kommutattív, de asszociatív.

  • -

    A diagonális mátrix olyan kvadratikus mátrix, aminek a főátlóján kívüli elemek nullák.

  • -

    Az egységmátrixok olyan diagonális mátrixok, aminek minden főátló-eleme egy.

  • -

    Az inverz mátrix egy olyan mátrix, hogy ha azzal szorozzuk az eredeti mátrixot, akkor egységmátrixot kapunk. Ha balról szorozva kapunk egységmátrixot, akkor bal inverz, ha jobbról szorozva, akkor jobb inverz mátrix.

  • -

    A kvadratikus mátrix négyzetes mátrix vagyis ugyanannyi sora van, mint oszlopa.

  • -

    Azokat a mátrixokat, melyek transzponáltjuk önmaga, szimmetrikus mátrixnak nevezzük.

  • -

    A transzponált a mátrix sorainak és oszlopainak felcserélése.

  • -

    Két vektor diadikus szorzata egy mátrix. Lássuk milyen.

  • -

    skaláris szorzat két vektor közti művelet, ami csinál belőlük egy számot.

  • -

    Vektort egy számmal úgy osztunk, hogy a vektor minden koordinátáját leosztjuk a számmal.

  • -

    Vektort egy számmal úgy szorzunk, hogy a vektor minden koordinátáját megszorozzuk a számmal.

  • -

    Két vektort úgy vonunk ki egymásból, hogy minden egyes koordinátájukat külön-külön kivonjuk egymásból.

  • -

    Két vektort úgy adunk össze, hogy minden egyes koordinátájukat külön-külön össze adjuk.

  • -

    Ha egy mátrixot megszorzunk balról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik sorát.

  • -

    Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak egy oszlopában lévő elemeit.

  • -

    Ha egy mátrixot megszorzunk jobbról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik oszlopát.

  • -

    Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak sorait.

Egy kis geometria

  • -

    Két pont közti vektor a végpontba mutató helyvektor minusz a kezdőpontba mutató helyvektor.

  • -

    Egy vektor hosszát megkapjuk, ha vesszük a koordinátái négyzetösszegének a gyökét. Két pont távolsága az őket összekötő vektor hossza.

  • -

    Vektorok összeadásakor összeadjuk az x koordinátákat és összeadjuk az y koordinátákat. Kivonáskor vesszük az x koordináták különbségét és az y koordináták különbségét.

  • -

    Két vektor skalárisszorzatát kiszámolhatjuk a vektorok hosszának és hajlásszögének segítségével, illetve a vektorok koordinátáival is.

  • -

    Egy vektor 90°-os elforgatásához megcseréljük a két koordinátáját és az egyik előjelét megváltoztatjuk.

  • -

    Két vektor merőleges egymásra, ha skaláris szorzatuk 0.

  • -

    Két vektor skaláris szorzata a vektorok hosszának szorzata a közbezárt szögük koszinuszával.

  • -

    Az egyenes egyenletének felírásához kell egy pontja és egy normálvektora.

  • -

    Az egyenes egyenletének felírásához a síkban szükségünk van az egyenes egy pontjára és a normálvektorára.

  • -

    Két pont közti vektort a vektorok koordinátáinak különbségével írhatunk fel.

  • -

    Két pont távolsága gyök alatt a koordináták különbségeinek négyzetösszege.

  • -

    A sík egyenletének felírásához kell egy pontja és egy normálvektora.

  • -

    A sík egyenletének felírásához kell a sík egy pontja és a normálvektora.

  • -

    Két vektor vektoriális szorzatát egy 3x3-as mátrix determinánsával számíthatjuk ki, ahol a mátrix első sora egységvektorok, a második és harmadik sora pedig az a és b vektorok.

  • -

    Két vektor vektoriális szorzata egy olyan harmadik vektort ad, ami merőleges a két vektor által kifeszített síkra.

Vektorterek, független és összefüggő vektorok

  • -

    A vektorösszeadás kommutatív, asszociatív, létezik nullelem és létezik ellentett. A skalárszoros asszociatív, disztributív a vektorokra és a skalárokra is, és létezik egységszeres.

  • -

    Egy vektorrendszer akkor lineárisan független, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.

  • -

    Egy vektorrendszer akkor lineárisan összefüggő, ha a vektorok lineáris kombinációjaként a nullvektor úgy is elő tud állni, hogy nem minden szorzótényező 0.

  • -

    A bázis független generátorrendszer.

  • -

    Egy vektorrendszer akkor alkot független rendszert, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.

  • -

    Vektorok generátor-rendszert alkotnak, ha minden vektortérbeli vektor elő áll az ő lineáris kombinációjuként.

Komplex számok

Interpolációs polinomok

  • -

    Az interpoláció egy közelítő módszer, amely a függvény ismert értékei alapján ad közelítést a nem ismert értékeire.

  • -

    A Lagrange-féle interpolációs polinom megadja azt a polinomot, amely $x_1$-ben $y_1$-et, $x_2$-ben $y_2$-t és így tovább $x_n$-ben $y_n$ értéket vesz föl.

  • -

    A Newton interpoláció első lépése, hogy elkészítjűk az úgynevezett Newton-együtthatókat. Ezt követően ezek segítségével állítjuk elő a polinomot.

  • -

    A Hermite interpoláció abban különbözőik a Lagrange és Newton féle interpolációktól, hogy az $x_1, x_2, \dots , x_n$ helyeken nem csak az eredeti polinom-függvény értékeit, hanem a deriváltjait is nézzük.

  • -

    Az interpoláció egy közelítő módszer, amely a függvény ismert értékei alapján ad közelítést a nem ismert értékeire. Ennek hibájának a megbecsléséhez van egy remek képlet.

Oszthatóság

  • -

    Két számok legnagyobb közös osztója az a szám, amelyik mindkét számot osztja és ezek közül a legnagyobb.

  • -

    Néhány izgalmas oszthatósági szabály.

  • -

    Két szám relatív prímek, ha a legnagyobb közös osztójuk 1.

  • -

    A nullától és az egységszorzóktól különböző összes $n$ egész szám felbontható prímek szorzatára a sorrendtől és az egységszeresektől eltekintve egyértelműen.

  • -

    Egy $q$ szám felbonthatatlan, ha nem létezik olyan egységtől különböző $a$ és $b$ szám, hogy $q=ab$

  • -

    Egy $p$ szám akkor prím, ha $p$ oszt egy szorzatot, akkor csak az egyik szorzótényezőnek lehet osztója.

Euklideszi algoritmus, Diofantoszi egyenletek

  • -

    Az euklideszi algoritmus egy formányos módszer két szám legnagyobb közös osztójának kiszámolására.

  • -

    A Diofantoszi egyenletek olyan egész együtthatós kétismeretlenes egyenletek, amelyek megoldásait az egész számok halmazán keressük.

Kongruenciák, Euler-Fermat tétel

  • -

    Ha $a$ és $b$ ugyanazt a maradékot adja $m$-mel osztva, akkor azt mondjuk, hogy $a$ és $b$ kongruensek modulo $m$.

  • -

    A kongruencia reflexív, szimmetrikus és tranzitív.

  • -

    Két szám akkor kongruensek mod m, ha m osztja a két szám különbségét.

  • -

    Kongruenciák szorzása és osztása egy egész számmal.

  • -

    Egy adott $m$ modulus esetén az $a$-val kongruens elemek halmazát az $a$ által reprezentált maradékosztálynak nevezzük.

  • -

    Egy mod $m$ modulus esetén az $m$-hez relatív prím elemekből álló maradékosztályokat redukált maradékosztálynak nevezzük.

  • -

    Az euler féle $ \varphi$ függvény azt adja meg, hogy hány $m$-nél nem nagyobb, $m$-hez relatív prím pozitív szám létezik.

  • -

    A kis Fermat-tétel általánosítása.

  • -

    A kis Fermat-tétel szerint ha veszünk egy $a$ egész számot és azt $p$-edik hatványra emeljük, ahol $p$ prímszám, akkor ez a hatvány $p$-vel osztva $a$ maradékot ad.

  • -

    A lineáris kongruenciák olyan kongruenciák, amikben x is szerepel.

  • -

    Lineáris kongruenciák megoldásának lépései.

  • -

    Az RSA lényege, hogy a titkosítás kulcsa nyilvános, vagyis azt bárki ismerheti. Csak a dekódolás kulcsa az, ami titkos.

Csoportok, gyűrűk, testek

  • -

    A kommutatív csoportokat Abel-csoportnak nevezzük.

  • -

    Azokat a nem üres halmazokat, amelyekben értelmezve van egy művelet, és ez a művelet asszociatív, létezik benne egységelem, és minden elemnek létezik benne inverze, csoportnak nevezzük.

  • -

    Azt az elemet, amely a művelet elvégzése során mindenkit változatlanul hagy, egységelemnek nevezzük.

  • -

    Egy elem akkor lesz inverz, ha azt tudja, hogy a művelet elvégzése során az eredeti elemből egységelemet csinál.

  • -

    Egy csoportot ciklikus csoportnak nevezünk, ha előáll egyetlen elemének egész kitevős hatványaiból.

  • -

    Egy elem rendje azt a legkisebb pozitív egész kitevőt jelenti, amelyre emelve az egységelemeket kapjuk.

  • -

    Ha egy csoportban az elemeknek nincs inverze, és nincs egységelem sem, akkor félcsoportnak nevezzük.

  • -

    Egy nem üres halmazt gyűrűnek nevezünk, ha értelmezve van benne egy összeadás és egy szorzás művelet. Az összeadásnak azt kell tudnia, hogy asszociatív és kommutatív. Van egységelem. Az összeadás egységelemét nullelemnek hívjuk. Minden elemnek van inverze, amit ellentettnek hívunk. A szorzásnak pedig mindössze annyit kell tudnia, hogy asszociatív. A két művelet pedig egymásra nézve disztributív:

  • -

    A kommutatív nullosztómentes gyűrűket nevezzük integritási tartománynak.

  • -

    Az $R$ gyűrűben az $I$ részhalmazt ideálnak nevezzük, ha $I$ részgyűrű $R$-ben és minden $R$-beli és $I$-beli elem szorzata eleme $I$-nek. És mivel a szorzás nem feltétlenül kommutatív, léteznek bal és jobb ideálok.

  • -

    Az egy elem által generált ideált főideálnak nevezzük.

  • -

    Azokat a gyűrűket, amelyben minden ideál főideál, úgy hívjuk, hogy főideálgyűrű.

  • -

    Azokat a komplex számokat, ahol $a$ és $b$ egész szám Gauss egésznek nevezzük.

  • -

    A Gauss egészek gyűrűt alkotnak az összedás és szorzás műveletekkel.

  • -

    A Gauss egészek gyűrűjében prímek azok a $p_1$ és $p_2$ Gauss egészek, amelyek szorzata $4k+1$ alakú prím.

  • -

    Az $n$ szám akkor és csak akkor áll elő két négyzetszám összegeként ha kanonikus alakjában minden $4k-1$ alakú prím kitevője páros.

  • -

    Komplex szám normája az $a$ és $b$ négyzetének összege.

  • -

    Azokat a gyűrűket, amikben működik az Euklideszi algoritmus úgy hívjuk, hogy Euklideszi gyűrű.

  • -

    Azokat a gyűrűket, melyeknek van additív inverze, és a 0-tól eltekintve minden elemének van multiplikatív inverze is, testnek nevezzük.

  • -

    A rendezés reláció négy fontos tulajdonságát rendezési axiómának nevezzük.

  • -

    A 9 test axióma.

  • -

    Minden számnál van nagyobb természetes szám. Ezt az állítást Arkhimédészi-axiómaként szokás emlegetni.

  • -

    A Cantor-axióma azt mondja, hogy egymásba skatulyázott zárt intervallumok végtelen sorozatának metszete nem üres.