18 témakör, 271 rövid és szuper érthető lecke

Ez a remek Analízis 1 kurzus 271 rövid és szuper-érthető tananyag, 28 pdf és 39 tesztfeladatsor segítségével 18 témakörön keresztül vezet végig az izgalmas Analízis 1 rögös útjain. Mindezt olyan könnyed stílusban, mintha csak a rántotta elkészítésének problémájáról lenne szó.

Tartalomjegyzék: 

A kurzus 18 szekcióból áll: Rémes előzmények, Függvények, Az inverzfüggvény, Komplex számok, Sorozatok, Küszöbindex és monotonitás, Rekurzív sorozatok, Sorok, Függvények határértéke és folytonossága, A határérték precíz definíciója, Deriválás, Differenciálhatóság vizsgálata és az érintő egyenlete, Függvényvizsgálat, gazdasági feladatok, L’Hospital szabály, Taylor sor, Taylor polinom, Határozatlan integrálás, primitív függvény, Határozott integrálás, Kétváltozós függvények, Paraméteres görbék

FÜGGVÉNYEK ÁBRÁZOLÁSA ÉS FÜGGVÉNYTRANSZFORMÁCIÓK

EXPONENCIÁLIS ÉS LOGARITMUS FÜGGVÉNYEK

TRIGONOMETRIKUS FÜGGVÉNYEK ÉS AZ EGYSÉGKÖR

INVERZ FÜGGVÉNY

KOMPLEX SZÁMOK

SOROZATOK

SOROK

FÜGGVÉNYEK HATÁRÉRTÉKE

FOLYTONOSSÁG

  • Függvények folytonossága - Egy függvényt akkor nevezünk folytonosnak valamely pontban, ha itt a függvényérték és a határérték megegyezik. Lássuk miért is ennyire fontos ez.
  • Szakadás - Ha egy adott pontban a függvényérték és a határérték nem egyezik meg, akkor a függvénynek szakadása van az adott pontban. Ennek számos típusa lehet...
  • Megszüntethető szakadás - Ez olyankor van, ha a függvénynek létezik határértéke az adott pontban, de az nem egyezik meg a függvényértékkel.
  • Ugrás - Ez olyankor van, ha a függvénynek nem létezik határértéke az adott pontban, de van jobb és bal oldali véges határértéke.
  • Nem megszüntethető nem véges szakadás - Ez olyankor van, ha a függvénynek nem véges a határértéke az adott pontban.
  • Nem megszüntethető oszcilláló szakadás - Ez mindegyik közül a legszörnyűbb eset, ilyenkor a függvénynek jobb és bal oldali határértéke sincs.

DIFFERENCIÁLSZÁMÍTÁS

A DERIVÁLÁS ALKALMAZÁSAI, FÜGGVÉNYVIZSGÁLAT

INTEGRÁLÁS, PRIMITÍV FÜGGVÉNY

HATÁROZOTT INTEGRÁLÁS

KÉTVÁLTOZÓS FÜGGVÉNYEK

  • Mik azok a kétváltozós függvények? - Néhány elképesztően izgalmas példa kétváltozós függvényekre.
  • Lokális szélsőértékek - A kétváltozós függvények minimumai és maximumai olyanok, mint hegycsúcsok és völgyek.
  • Nyeregpont - Ez egy speciális pont a kétváltozós függvények felületén, amely bizonyos irányok szerint maximum, míg más irányok mentén minimum.
  • Parciális deriválás - A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
  • x szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol x-et tekintjük változónak.
  • y szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol y-t tekintjük változónak.
  • Másodrendű deriváltak - Az első deriváltak tovább deriválása újra parciális deriválással történik. Így négy darab másodrendű deriváltat kapunk. Két tiszta másodrendű deriváltat és két vegyes másodrendű deriváltat.
  • Young tétel - A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.
  • Stacionárius pont - Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
  • Hesse mátrix - A másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen gyeregpontja van-e.
  • Érintősík - Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ezesetben most egy sík lesz az érintő.
  • Az érintősík normálvektora - Az érintősík normálvektora a parciális derivltakból keletkező vektor, amit gradiensnek vagy másként deriváltvektornak is neveznek.
  • Gradiens - A parciális derivltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
  • Deriváltvektor - A parciális derivltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
  • Iránymenti derivált - Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.
  • Implicit deriválás tétele - Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.
Visszajelzés