Analízis 1
A kurzus 26 szekcióból áll: Komplex számok, Polinomok, Vektorok, egyenesek és síkok egyenletei, Halmazok, rendezett párok, leképezések, matematikai logika, Hatványozás, logaritmus, exponenciális és logaritmusos egyenletek, Trigonometria, trigonometrikus egyenletek, Függvények, Összetett függvény és inverz függvény, Trigonometrikus függvények és arkusz függvények, Hiperbolikus függvények és inverzeik, Sorozatok határértéke, Küszöbindex és monotonitás, Rekurzív sorozatok, Sorok, Függvények határértéke és folytonossága, A határérték precíz definíciója, Deriválás, Differenciálhatóság vizsgálata és az érintő egyenlete, Könnyű függvényvizsgálat és szélsőértékfeladatok, Teljes függvényvizsgálat, gazdasági feladatok, Taylor polinom és Taylor sor, L’Hôpital szabály, Határozatlan integrálás, primitív függvény, Határozott integrálás, Kétváltozós függvények, Paraméteres görbék
FÜGGVÉNYEK ÁBRÁZOLÁSA ÉS FÜGGVÉNYTRANSZFORMÁCIÓK
- Értelmezési tartomány, értékkészlet - Azokat a szerencsés x-eket, amelyekhez a függvény hozzárendel egy y számot, a függvény értelmezési tartományának nevezzük. Azokat az y-okat pedig, amelyeket hozzárendel értékkészletnek.
- Függvénytranszformációk - Külső és belső transzformációk.
- Eltolás és tükrözés - Tükrözés az x tengelyre és tükrözés az y tengelyre.
EXPONENCIÁLIS ÉS LOGARITMUS FÜGGVÉNYEK
- Exponenciális azonosságok - Lássuk a legfontosabb hatványazonosságokat.
- Exponenciális egyenletek - Megoldunk néhány exponenciális egyenletet.
- Exponenciális függvények - Az exponenciális függvények áttekintése.
- Logaritmus azonosságok - Lássuk a legfontosabb logaritmus azonosságokat.
- Logaritmikus egyenletek - Megoldunk néhány logaritmikus egyenletet.
- Logaritmus függvények - A logaritmus függvények áttekintése.
TRIGONOMETRIKUS FÜGGVÉNYEK ÉS AZ EGYSÉGKÖR
- Az egységkör - Az egységkör egy origo középpontú egységnyi sugarú kör és marhajó dolgokra képes...
- Kezdő sugár - Az egységkörben az x tengely irányába mutató sugárirány, innen kezdjük mérni a forgásszöget.
- Forgásszög - A kezdő sugártól mért szög.
- Koszinusz - Az egységkörben az egységvektor x koordinátája.
- Szinusz - Az egységkörben az egységvektor y koordinátája.
- Trigonometrikus függvények - Lássuk milyen trigonometrikus függvények vannak.
- Periodikus függvények - Olyan függvények, amelyek időről időre megismétlik önmagukat.
- Trigonometrikus egyenletek - Lássuk hogyan kell megoldani trigonometrikus egyenleteket.
- Magasabb fokú trigonometrikus egyenletek - Néhány izgalmas feladat.
INVERZ FÜGGVÉNY
- Az inverz függvény - Lássuk hogyan kell kiszámolni az inverzet.
- Néhány fontosabb függvény inverze - Fontosabb függvények inverze és az inverz geometriai jelentése.
KOMPLEX SZÁMOK
- Valós számok - A számegyenes minden pontja egy valós szám.
- Imaginárius számok - Nekik már nincs hely a számegyenesen, így egy arra merőleges tengelyre helyezzük el őket. Ezt nevezzük imaginárius tengelynek.
- Komplex számok - Olyan számok, amelyek valós és képzetes részből épülnek fel.
- Műveletek komplex számokkal - Lássuk milyen műveleteket tudunk velük végezni.
- Komplex Konjugált - A komplex szám tükörképe az x tengelyre.
- Az algebra alaptétele - Minden polinom komplexben elsőfokú tényezők szorzatára bontható.
- Komplex számok abszolútértéke - Egy komplex szám abszolútértéke az origotól mért távolsága.
- A komplex számsík - Halmazok a komplex számsíkon.
- Algebrai alak - A komplex számok algebrai alakja.
- A trigonometrikus alak - A komplex számok osztását, szorzását és hatványozását megkönnyítő forma.
- Moivre formulák - A szorzásra, osztásra és hatványozásra vonatkozó azonosságok.
- Gyökvonás komplexben - A gyökvonás azonosságai.
SOROZATOK
- Sorozatok indexe - A sorozatok indexe azt mondja meg nekünk, hogy éppen hányadik tagnál járunk.
- Sorozatok határértéke - A sorozatok egyik legfontosabb tulajdonsága a határértékük, ami azt jelenti, hogy mi történik a sorozattal ahogy egyre és egyre nagyobb indexű tagjait vizsgáljuk.
- Nevezetes sorozatok - Exponenciális sorozatok határértéke, polinomiális sorozatok határértéke, gyökös sorozatok határértéke.
- Határérték és műveletek - Két sorozat összegének határértéke, két sorozat szorzatának határértéke, két sorozat hányadosának határértéke.
- A határérték kiszámolása - A törtes sorozatok határértékének kiszámolása: mindig a nevező legerősebb tagjával osztunk.
- Gyökös sorozatok - Lássuk mi a teendő gyökös sorozatok és ronda gyökös sorozatok esetén.
- e-hez tartó sorozatok - Egy nevezetes sorozatcsalád, az e-hez tartó sorozatok.
- Konvergens sorozatok - Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük.
- Divergens sorozatok - Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük.
- Oszcilláló sorozatok - Az ugráló sorozatokat oszcillálónak nevezzük. Lássunk néhány példát.
- Rendőr-elv - Ha két rendőr közrefog egy honpolgárt és a két rendőr konvergál a rendőrőrsre, akkor az általuk közrefogott honpolgárnak is szükségképpen konvergálnia kell a rendőrőrsre..
- Becslések - Megtanuljuk, hogyan kell alulról és felülről becsülni.
SOROK
- Mik azok a végtelen sorok? - A bolha ugrásai a számegyenesen.
- Konvergens és divergens sorok - Mikor konvergens és mikor divergens egy sor?
- A mértani sor - A mértani sor képlete, példák mértani sorokra.
- A mértani sor összegképlete - A mértani sorok összegének kiszámolása.
- Konvergenciakritériumok - A sorok konvergenciájának megállapítására vonatkozó képletek.
- Hányados-kritérium - Egy fontos konvergenciakritérium.
- Gyök-kritérium - Egy másik fontos konvergenciakritérium
- Leibniz-sorok - Speciális sorok.
- Összehasonlító kritérium - A majoráns és a minoráns kritérium.
- Sorok összegének kiszámítása - Néhány trükk a sorok összegének meghatározására.
- Teleszkopikus sorok - Olyan sorok, amelyek valójában az első és az utolsó tagon kívül semmilyen más tagot nem tartalmaznak.
- Hatványsorok - A végtelen sorok egy speciális fajtája.
- Konvergenciasugár - A hatványsorok konvergenciájának vizsgálata.
- Konvergencia tartomány - A hatványsorok konvergenciájának vizsgálata.
FÜGGVÉNYEK HATÁRÉRTÉKE
- Függvényhatárérték - Lássuk mi is az a függvényhatárérték!
- Határérték kiszámolása - Néhány remek módszer a függvények határértékének kiszámolására.
- Racionális törtfüggvények határértéke - Racionális törtfüggvényeknél előforduló 0/0 és szám/0 típusú határértékek kiszámolásának módszerei.
- Trigonometrikus függvények határértéke - Beszéljünk egy kicsit a trigonometrikus függvények határértékéről. Néhány nevezetes határérték, élükön a sinx/x típusúval.
FOLYTONOSSÁG
- Függvények folytonossága - Egy függvényt akkor nevezünk folytonosnak valamely pontban, ha itt a függvényérték és a határérték megegyezik. Lássuk miért is ennyire fontos ez.
- Szakadás - Ha egy adott pontban a függvényérték és a határérték nem egyezik meg, akkor a függvénynek szakadása van az adott pontban. Ennek számos típusa lehet...
- Megszüntethető szakadás - Ez olyankor van, ha a függvénynek létezik határértéke az adott pontban, de az nem egyezik meg a függvényértékkel.
- Ugrás - Ez olyankor van, ha a függvénynek nem létezik határértéke az adott pontban, de van jobb és bal oldali véges határértéke.
- Nem megszüntethető nem véges szakadás - Ez olyankor van, ha a függvénynek nem véges a határértéke az adott pontban.
- Nem megszüntethető oszcilláló szakadás - Ez mindegyik közül a legszörnyűbb eset, ilyenkor a függvénynek jobb és bal oldali határértéke sincs.
DIFFERENCIÁLSZÁMÍTÁS
- Mi az a deriválás? - A derivált a függvény grafikonjához húzott érintő meredeksége. Lássuk a sztorit..
- A deriválás definíciója - A deriválás bemutatása és a precíz definíció.
- Differencia hányados - A szelő meredeksége a differencia hányados.
- Differenciál hányados - Az érintő meredeksége a differenciál hányados.
- Alapderiváltak - Fontosabb függvények deriváltjai.
- Deriválási szabályok - Összeg, szorzat és hányados függvények deriváltjai.
- Lánc-szabály - Egy csodálatos szabály az összetett függvények deriválására.
- Összetett függvények deriválása- Példák összetett függvények deriválására.
A DERIVÁLÁS ALKALMAZÁSAI, FÜGGVÉNYVIZSGÁLAT
- Az első derivált és a monotonitás - Az első derivált azt írja le, hogy a függvény mikor nő és mikor csökken.
- A második derivált és a konvexitás - A második derivált a függvény hangulatát írja le, ha pozitív, akkor a függvény vidám, ha negatív, akkor szomorkodik.
- Stacionárius pontok és a derivált előjele - A deriválás után megállapítjuk a derivált előjelét. Amikor a derivált nulla, olyankor stacionárius pont van.
- A függvény grafikonja - Lássuk, hogyan kell megrajzolni a függvény grafikonját.
- Gazdasági feladatok - Néhány izgalmas gazdasági feladat.
- L'Hospital szabály - A határérték számítás csodafegyvere, egy szuper módszer, amivel nagyon sok bonyolult határérték gyorsan kiszámolható.
- Taylor Polinom és Taylor sor - Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
INTEGRÁLÁS, PRIMITÍV FÜGGVÉNY
- Határozott és határozatlan integrálás - A határozott integrálással függvények görbéje alatti területeket tudunk kiszámolni, míg a határozatlan integrálással az úgynevezett primitív függvényt tudjuk meghatározni. A kétféle integrálás között a Newton-Leibniz formula létesít kapcsolatot.
- Primitív függvény - Egy f(x) függvény primitív függvénye az a F(x) függvény, amelyet deriválva f(x)-et kapjuk.
- Newton-Leibniz formula - A tétel, amely ezt a kapcsolatot leírja, az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
- Alapintegrálok - Tekintsük át a fontosabb függvények integráljait.
- Integrálási szabályok - Lássuk, milyen integrálási szabályok vannak...
- Szorzatok integrálása - Lássuk, milyen módszerek vannak szorzatok integrálására.
- Törtek integrálása - Lássuk, milyen módszerek vannak törtek integrálására.
- Parciális integrálás - Ezzel a remek módszerrel szorzatokat tudunk integrálni úgy, hogy egy bonyolultabb integrálásból csinálunk egy egyszerűbb integrálást.
- Összetett függvények integrálása - Összetett függvényeket általában akkor tudunk integrálni, ha azok meg vannak szorozva a belső függvényük deriváltjával. Van is erre egy remek kis képlet.
- Helyettesítéses integrálás - Bizonyos esetekben érdemes bevezetni egy helyettesítést, amivel az integrálás egyszerűbbé válik. Nézzük meg, hogyan!
- Parciális törtek - A racionális törtfüggvények integrálásához a függvényeket parciális törtekre kell bontani, majd a parciális törteket egyesével integrálni.
- Racionális törtfüggvények integrálása - A racionális törtfüggvények integrálásához a függvényeket parciális törtekre kell bontani, majd a parciális törteket egyesével integrálni.
- Polinomosztás - A parciális törtekre bontás előtt néha polinomosztás is kell. Nézzük mikor és hogyan.
- Trigonometrikus függvények integrálása - A trigonometrikus kifejezések integrálása meglehetősen vicces feladat. Csak jó humorérzékűeknek ajánlott...
- Tangens x-feles helyettesítés - Az egyik legfontosabb helyettesítéses integrálási módszer elsőfokú trigonometrikus kifejezéseket tartalmazó törtekre.
HATÁROZOTT INTEGRÁLÁS
- Határozott és határozatlan integrálás - A határozott integrálással függvények görbéje alatti területeket tudunk kiszámolni, míg a határozatlan integrálással az úgynevezett primitív függvényt tudjuk meghatározni. A kétféle integrálás között a Newton-Leibniz formula létesít kapcsolatot.
- Primitív függvény - Egy f(x) függvény primitív függvénye az a F(x) függvény, amelyet deriválva f(x)-et kapjuk.
- Newton-Leibniz formula - A tétel, amely ezt a kapcsolatot leírja, az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
- Két függvény közötti terület kiszámolása - Néhány tipikus feladat két függvény grafikonjai által közrezárt terület kiszámítására.
- Improprius integrál - Végtelenbe nyúló tartományok területének kiszámolása.
KÉTVÁLTOZÓS FÜGGVÉNYEK
- Mik azok a kétváltozós függvények? - Néhány elképesztően izgalmas példa kétváltozós függvényekre.
- Lokális szélsőértékek - A kétváltozós függvények minimumai és maximumai olyanok, mint hegycsúcsok és völgyek.
- Nyeregpont - Ez egy speciális pont a kétváltozós függvények felületén, amely bizonyos irányok szerint maximum, míg más irányok mentén minimum.
- Parciális deriválás - A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
- x szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol x-et tekintjük változónak.
- y szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol y-t tekintjük változónak.
- Másodrendű deriváltak - Az első deriváltak tovább deriválása újra parciális deriválással történik. Így négy darab másodrendű deriváltat kapunk. Két tiszta másodrendű deriváltat és két vegyes másodrendű deriváltat.
- Young tétel - A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.
- Stacionárius pont - Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- Hesse mátrix - A másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen nyeregpontja van-e.
- Érintősík - Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ez esetben most egy sík lesz az érintő.
- Az érintősík normálvektora - Az érintősík normálvektora a parciális deriváltakból keletkező vektor, amit gradiensnek vagy másként deriváltvektornak is neveznek.
- Gradiens - A parciális derivltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
- Deriváltvektor - A parciális deriváltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
- Iránymenti derivált - Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.
- Implicit deriválás tétele - Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.
Komplex számok
- -
Komplex számok összeadásakor összeadjuk a valós részeket és külön összeadjuk a képzetes részeket. Kivonáskor külön kivonjuk egymásból a valós részeket és a képzetes részeket.
- -
Egy képlet az a+bi alakú komplex számok szorzásához.
- -
A komplex számok egy valós és egy imaginárius (képzetes) számból épülnek föl. A valós számok a szokásos x tengelyen helyezkednek el, míg az imaginárius számok egy erre merőleges y tengelyen, amit imaginárius tegelynek, vagy képzetes tengelynek nevezünk.
- -
Olyan számok, amelyek valós és képzetes részből épülnek fel.
- -
A valós számokat úgy érdemes elképzelni, mint egy koordinátarendszer x tengelyét. És minden helyet ki is töltenek a valós számok ezen a számegyenesen. A komplex számok egy valós és egy imaginárius (képzetes) részből épülnek föl, és szemléltetésükhöz nem egy, hanem két koordinátatengelyre van szükség. Az x tengelyen vannak a valós számok, az y tengelyen pedig az imaginárius, vagyis a képzetes számok. A valós számok tengelyén az egység a szokásos 1, míg az imaginárius számok tengelyén az egység az i. A kétb tengely által kifeszített síkot nevezzük komplex számsíknak, vagy másknt Gauss-féle számsíknak.
- -
A komplex szám tükörképe az x tengelyre.
- -
Egy komplex szám abszolútértéke az origotól mért távolsága.
- -
A komplex számok osztását, szorzását és hatványozását megkönnyítő forma.
- -
Képlet komplex számok szorzásához és osztásához, ha azok trigonometrikus alakban vannak megadva.
- -
Egy képlet komplex számok hatványozásához, ha a komplex szám trigonometrikus alakban van.
- -
Egy képlet komplex számok gyökvonásához, ha a komplex szám trigonometrikus alakban van.
- -
Képlet komplex számok szorzásához és összeadásához, ha a komplex számok exponenciális alakban vannak megadva.
- -
Egy képlet komplex számok hatványozásához, ha a komplex szám exponenciális alakban van.
- -
Egy képlet komplex számok gyökvonásához, ha a komplex szám exponenciális alakban van.
Vektorok, egyenesek és síkok egyenletei
- -
Vektorok összeadásakor összeadjuk az x koordinátákat és összeadjuk az y koordinátákat. Kivonáskor vesszük az x koordináták különbségét és az y koordináták különbségét.
- -
Egy vektor hosszát megkapjuk, ha vesszük a koordinátái négyzetösszegének a gyökét. Két pont távolsága az őket összekötő vektor hossza.
- -
Két pont közti vektor a végpontba mutató helyvektor minusz a kezdőpontba mutató helyvektor.
- -
Két vektor skaláris szorzata a vektorok hosszának szorzata a közbezárt szögük koszinuszával.
- -
Egy vektor 90°-os elforgatásához megcseréljük a két koordinátáját és az egyik előjelét megváltoztatjuk.
- -
Két vektor skalárisszorzatát kiszámolhatjuk a vektorok hosszának és hajlásszögének segítségével, illetve a vektorok koordinátáival is.
- -
Két vektor merőleges egymásra, ha skaláris szorzatuk 0.
- -
Az egyenes egyenletének felírásához kell egy pontja és egy normálvektora.
- -
A sík egyenletének felírásához kell egy pontja és egy normálvektora.
- -
Két pont közti vektort a vektorok koordinátáinak különbségével írhatunk fel.
- -
Két pont távolsága gyök alatt a koordináták különbségeinek négyzetösszege.
- -
Az egyenes egyenletének felírásához a síkban szükségünk van az egyenes egy pontjára és a normálvektorára.
- -
A sík egyenletének felírásához kell a sík egy pontja és a normálvektora.
- -
Két vektor vektoriális szorzatát egy 3x3-as mátrix determinánsával számíthatjuk ki, ahol a mátrix első sora egységvektorok, a második és harmadik sora pedig az a és b vektorok.
- -
Két vektor vektoriális szorzata egy olyan harmadik vektort ad, ami merőleges a két vektor által kifeszített síkra.
Halmazok, rendezett párok, leképezések, matematikai logika
- -
Az A és B halmazok uniója: Azon elemek halmaza, amelyek legalább az egyik halmazban benne vannak. Az A és B halmazok metszete: Azon elemek halmaza, amelyek mindkét halmazban benne vannak. Az A és B halmazok különbsége: Azon elemek halmaza, amelyek az A halmazba benne vannak, de a B halmazba nem. Az A halmaz komplementere a H alaphalmazon nézve: Az alaphalmaz azon elemeinek halmza, amelyek nincsenek benne az A-ban.
- -
A logikai szita formula a halmazok elemszámának meghatározását segítő képlet.
- -
Az első De Morgan azonosság azt mondja, hogy a metszet komplementere pont megegyezik a komplementrek uniójával. A második De Morgan azonosság pedig azt mondja, hogy az unió komplementere éppen megegyezik a komplementerek metszetével.
- -
Egy halmaz összes részhalmazainak halmazát hatványhalmaznak nevezzük.
- -
Két halmaz szimmetrikus differenciája a halmazok kétféle különbségének uniója.
- -
A függvény értékkészlete azoknak az elemeknek a halmaza a B halmazban, amelyek hozzá vannak rendelve valamely A halmazbeli elemekhez.
- -
Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.
- -
Az univerzális kvantor egy jelölése a "minden" kifejezésnek.
- -
Az egzisztenciális kvantor egy jelölése a "létezik" vagy "van olyan" kifejezésnek.
- -
Egy $A$ kijelentés negációja az a kijelentés, amely akkor igaz, ha $A$ hamis és akkor hamis, ha $A$ igaz.
- -
Az állítás (vagy kijelentés) olyan kijelentő mondat, amelyről egyértelműen eldönthetjük, hogy az igaz vagy hamis.
- -
Két kijelentés konjunkciója pontosan akkor igaz, ha mindkét kijelentés igaz, különben hamis.
- -
Két kijelentés diszjunkciója pontosan akkor igaz, ha legalább az egyik kijelentés igaz, különben hamis.
- -
Az implikáció akkor hamis, ha $A$ igaz és $B$ hamis, minden más esetben igaz.
- -
Az ekvivalencia akkor igaz, ha $A$ és $B$ logikai értéke azonos, különben hamis.
- -
De Morgan azonosságok a konjunkció, diszjunkció, implikáció és ekvivalencia tagadásaira.
- -
A diszjunktív normálforma, röviden DNF egy olyan alakja egy logikai formuláknak, ahol a művelet a változóinak vagy negáltjainak konjunkcióinak diszjunkciója.
Hatványozás, logaritmus, exponenciális és logaritmusos egyenletek
- -
Készítünk egy szuper-érthető összefoglalót a hatványazonosságokból. Megnézzük, hogyan kell a hatványazonosságokat használni. Megnézzük mi az az exponenciális függvény és hogyan kell ábrázolni.
- -
Az exponenciális függvények meglehetősen fontosak a matematikában, sőt nem csak a matematikában. Itt jönnek az exponenciális függvények.
- -
Itt végre szuper-érthetően kiderül, hogy mi az a logaritmus. Készítünk egy gyors kis összefoglalót a logaritmus azonosságairól. Megnézzük, hogyan kell a logaritmus azonosságokat használni. Megnézzük mi az a logaritmus függvény és hogyan kell ábrázolni.
- -
Készítünk egy szuper-érthető összefoglalót a logaritmus azonosságokról. Megnézzük, hogyan kell az azonosságokat használni, milyen kikötéseket kell tenni a logaritmikus kifejezéseknél, hogyan néz ki a logaritmus függvény.
- -
Mik azok az exponenciális egyenletek? Hogyan kell megoldani egy exponenciális egyenletet? Törtes exponenciális egyenletek. Másodfokú egyenletre vezető exponenciális egyenletek.
- -
Mik azok az exponenciális egyenlőtlenségek? Hogyan kell megoldani egy exponenciális egyenlőtlenséget?
- -
Mik azok a logaritmusos egyenletek? Hogyan kell megoldani egy logaritmikus egyenletet? Milyen kikötéseket kell tenni egy logaritmusos egyenlet megoldásánál? Törtes logaritmikus egyenletek. Másodfokú egyenletre vezető logaritmikus egyenletek.
Trigonometria, trigonometrikus egyenletek
- -
Mi az egység sugarú kör? Mi az a szinusz és koszinusz? Mire jó a szinusz és a koszinusz? Mi az a radián? Mi a kapcsolat a fok és a radián között?
- -
Trigonometriai képlet összefoglaló. Összefüggések a tangens és kotangens között. A trigonometria alapegyenlete. Szögek kétszeresének szinusza és koszinusza.
- -
Az egységkör egy szöggel elforgatott egységvektorának végpontjának x koordinátáját nevezzük a szög koszinuszának
- -
Az egységkör egy szöggel elforgatott egységvektorának végpontjának y koordinátáját nevezzük a szög szinuszának.
- -
Egy szög tangense a szög szinuszának és koszinuszának hányadosával egyenlő.
- -
Szinuszt és koszinuszt tartalmazó egyenletek megoldásának lépései.
- -
Trigonometrikus függvényeknek vagy szögfüggvényeknek nevezzük azokat a függvényeket, amelyek tartalmaznak trigonometrikus kifejezéseket, mint például szinusz, koszinusz vagy tangens. Ezek eredetileg egy derékszögű háromszög egy szöge és két oldala hányadosa közti összefüggéseket írja le.
Függvények
- -
A függvény értékkészlete azoknak az elemeknek a halmaza a B halmazban, amelyek hozzá vannak rendelve valamely A halmazbeli elemekhez.
- -
Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.
- -
A függvény monotonitása lehet növekedő, csökkenő, szigorúan monton növekedő vagy szigorúan monoton csökkenő.
- -
Globális és lokális maximumok és minimumok.
- -
A függvény konvexitása megmondja, hogy a függvény szomorú vagy vidám hangulatban van.
- -
Megnézzük, hogy melyik függvény hogyan néz ki, aztán megnézzük a külső és belső függvénytranszformációkat. Eltolás az x tengely mentén, eltolás az y tengely mentén, tükrözés, nyújtás.
- -
Mikor páros, mikor páratlan vagy éppen egyik sem egy függvény.
- -
Lássuk mik azok a polinomfüggvények, és hogyan kell őket ábrázolni.
Összetett függvény és inverz függvény
- -
Ha két függvényt egymásba ágyazunk, összetett függvényt kapunk.
- -
A függvény hozzárendelésének megfordításával kapjuk a függvény inverzfüggvényét, amennyiben a megfordított hozzárendelés is egy egyértelmű hozzárendelés.
Sorozatok határértéke
- -
Nevezetes 0-hoz tartó sorozatok.
- -
Nevezetes végtelenhez tartó sorozatok.
- -
Nevezetes gyökös sorozatok határértéke.
- -
Exponenciális kifejezések határértéke.
- -
Egy nevezetes sorozatcsalád, az e-hez tartó sorozatok.
- -
Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük. Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük. Az ugráló sorozatokat oszcillálónak nevezzük. Lássunk néhány példát.
- -
Ha két rendőr közrefog egy honpolgárt és a két rendőr konvergál a rendőrőrsre, akkor az általuk közrefogott honpolgárnak is szükségképpen konvergálnia kell a rendőrőrsre..
- -
- -
A végtelenbe tartó sorozatok nagyságrendi sorrendje azt mondja meg, hogy melyik sorozat milyen ütemben tart a végtelenbe. Minél nagyobb nagyságrendű egy sorozat, annál gyorsabban tart a végtelenbe
- -
Egy sorozatnak torlódási pontja az A szám, ha bármilyen kis környezetében a sorozatnak végtelen sok tagja van.
- -
Egy sorozat limesz inferiorja a torlódási pontjainak infinuma. A limesz szuperiorja a torlódási pontjainak szuprémuma.
Küszöbindex és monotonitás
- -
A sorozatok egyik legfontosabb tulajdonsága a határértékük, ami azt jelenti, hogy mi történik a sorozattal ahogy egyre és egyre nagyobb indexű tagjait vizsgáljuk.
- -
Ha egy sorozat határértéke valós szám, akkor a sorozatot konvergensnek nevezzük.
- -
Ha a sorozat határértéke plusz vagy mínusz végtelen, illetve ha egyáltalán nincs is határértéke, akkor a sorozatot divergensnek nevezzük.
- -
A sorozat monotonitása lehet monton nő, monoton csökkenő, szigorúan monoton nő, szigorúan monoton csökkenő.
Sorok
- -
A mértani sor képlete, példák mértani sorokra.
- -
Egy végtelen sor akkor konvergens, ha részletösszegsorozata konvergens.
- -
Ha egy sorozat határértéke nem 0, akkor a belőle képzett sor divergens.
- -
Speciális sorok.
- -
Egy másik fontos konvergenciakritérium, ami az n-edik tag n-edik gyökének segítségével dönti el a konvergenciát.
- -
Egy fontos konvergenciakritérium, amely az n+1-edik tag és az n-edik tag hányadosával dönti el a konvergenciát.
- -
Speciális sorok.
- -
A sorok konvergenciájának megállapítására vonatkozó képletek.
- -
Tört hatványának sorának konvergenciája a hatványkitevőtől függően.
- -
Olyan sorok, amelyek valójában az első és az utolsó tagon kívül semmilyen más tagot nem tartalmaznak.
- -
Ha $x_0$ a hatványsor középpontja, akkor az $x_0$ pont $r$ sugarú környezetét konvergencia tartománynak nevezzük, ahol $r$ a konvergenciasugár.
- -
A hatványsorok konvergenciájának vizsgálata.
Függvények határértéke és folytonossága
- -
Egy függvényt akkor nevezünk folytonosnak valamely pontban, ha itt a függvényérték és a határérték megegyezik. Lássuk miért is ennyire fontos ez.
- -
Függvények szakadása négy féle lehet: megszüntethető szakadás, ugrás, nem megszüntethető, nem véges szakadás, nem megszüntethető oszcilláló szakadás.
- -
Beszéljünk egy kicsit a trigonometrikus függvények határértékéről. Néhány nevezetes határérték, élükön a sinx/x típusúval.
A határérték precíz definíciója
- -
Lássuk mi is az a függvényhatárérték!
- -
Lássuk mi is az a függvényhatárérték!
Deriválás
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
Konstans deriváltja, polinomok deriválási szabálya. Az exponenciális és logaritmus függvények deriválása. Trigonometrikus függvények deriváltjai.
- -
Függvény konstansszorosának, két függvény összegének, szorzatának és hányadosának deriválási szabályai. Összetett függvények deriválási szabálya.
- -
A lánc-szabály az összetett függvények deriválási szabálya.
- -
A sinh és cosh hiperbolikus függvények közt fennálló azonosságok.
- -
A cosh, sinh és tanh függvények deriváltjai.
- -
A cosh, sinh és tanh függvények inverzfüggvényei.
- -
Az arcosh, arsinh és artanh függvények deriváltjai.
Differenciálhatóság vizsgálata és az érintő egyenlete
- -
Egy szelő egyenes meredeksége a differenciahányados.
- -
A deriválás úgy működik, hogy függvények grafikonjának meredekségét vizsgálja, mégpedig azzal, hogy megnézi, milyen meredek érintő húzható a függvény grafikonjához. Ha az érintő "fölfele megy" akkor a függvény grafikonja is "fölfele megy" vagyis a függvény növekszik. Hogyha pedig az érintő "lefele megy" akkor a függvény grafikonja is "lefele megy" tehát a függvény csökken. Egy függvény érintő egyenesének meredeksége a differenciálhányados.
- -
A függvény érintője egy olyan egyenes, amely egy függvényt pontosan egy pontban érint.
Teljes függvényvizsgálat, gazdasági feladatok
- -
Az első derivált azt írja le, hogy a függvény mikor nő és mikor csökken.
- -
A második derivált a függvény hangulatát írja le, ha pozitív, akkor a függvény vidám, ha negatív, akkor szomorkodik.
- -
A deriválás után megállapítjuk a derivált előjelét. Amikor a derivált nulla, olyankor stacionárius pont van.
- -
Azok a szerencsés x-ek, amelyekhez a függvény hozzárendel egy y számot.
Taylor polinom és Taylor sor
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Az $e^x$, lnx, sinx és cosx függvények Taylor sorai.
- -
Amikor egy függvény x helyen lévő értékét szeretnénk közelíteni egy Taylor polinommal, akkor lesz egy kis hibánk, mivel a polinom nem teljesen követi a függvényt. Ennek a hibának a kifejezésére van a Lagrange-féle maradéktag.
L’Hôpital szabály
- -
A határérték számítás csodafegyvere, egy szuper módszer, amivel nagyon sok bonyolult határérték gyorsan kiszámolható.
- -
Néhány exponenciális, logaritmusos és végtelenhez, nullához tartó nevezetes sorozatok határértékei.
Határozatlan integrálás, primitív függvény
- -
Az f(x) függvény primitív függvényének jele F(x) és azt tudja, hogy ha deriváljuk, akkor visszakapjuk f(x)-et. Egy függvény primitív függvényeinek halmazát nevezzük a függvény határozatlan integráljának.
- -
Polinomok integrálása. Törtfüggvény integrálása. Exponenciális függvények integrálása. Trigonometrikus függvények integrálása.
- -
Polinomok, törtfüggvény, exponenciális függvények, trigonometrikus függvények integráljainak lineáris helyettesítései.
- -
Integráláskor a konstans szorzó kivihető.
- -
Összeget külön-külön is integrálhatunk.
- -
Ha a szorzás elvégezhető, akkor végezzük el, és utána integráljunk.
- -
Szorzat integrálásának egy speciális esete, amikor a függvény n-edik hatványon van és meg van szorozva a deriváltjával.
- -
Ezzel a remek módszerrel szorzatokat tudunk integrálni úgy, hogy egy bonyolultabb integrálásból csinálunk egy egyszerűbb integrálást.
- -
Összetett függvényeket általában akkor tudunk integrálni, ha azok meg vannak szorozva a belső függvényük deriváltjával. Van is erre egy remek kis képlet.
- -
Próbálkozzunk a tört földarabolásával és utána integráljunk.
- -
Törtek integrálásának egy speciális esete, amikor a tört számlálója a nevező deriváltja.
- -
A helyettesítéses integrálás lényege, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk majd megoldani a feladatot.
- -
A helyettesítéses integrálás lényege, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk majd megoldani a feladatot.
- -
A helyettesítéses integrálás úgy működik, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk megoldani a feladatot.
A helyettesítéses integrálás egyik legfurcsább esete az $u = \tan{ \frac{x}{2} } $. Olyankor használjuk, ha a törtben $\sin{x}$ és $\cos{x}$ is csak első fokon szerepel.
- -
A racionális törtfüggvények integrálásához a függvényeket parciális törtekre kell bontani, majd a parciális törteket egyesével integrálni.
Határozott integrálás
- -
A Newton-Leibniz formula egy egyszerűen használható képlet a határozott integrál kiszámításához. Ez a tétel az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
- -
Egy zárt intervallumon értelmezett függvény akkor Riemann integrálható, ha egyetlen olyan szám létezik, amely bármely alsó közelítő összegénél nagyobb egyenlő, és bármely felső közelítő összegénél kisebb egyenlő.
- -
Végtelenbe nyúló tartományok területének kiszámolása egy fontos függvénnyel.
- -
Forgástestek térfogatának és felszínének képletei határozott integrálással.
Kétváltozós függvények
- -
A kétváltozós függvények úgy működnek, hogy két valós számhoz rendelnek hozzá egy harmadik valós számot.
- -
A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.
- -
A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
- -
Egy általános módszer, amivel kétváltozós függvények szélsőértékeit és nyeregpontjait lehet meghatározni
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- -
másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen nyeregpontja van-e.
- -
A sík azon pontjainak összességét, amelyekben az $f$ függvény ugyanazt a konstans értéket veszi fel, az $f$ függvény szintvonalának nevezzük.
- -
Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ez esetben most egy sík lesz az érintő.
- -
A parciális deriváltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
- -
Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.
- -
Egy függvény akkor implicit, ha $y$ nincs kifejezve, vagyis nem $y=\dots$ alakú.
- -
Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.
Paraméteres görbék
- -
A ciklois egy olyan görbe, amelyet egy irányított görbén csúszás nélkül legördülő kör egy meghatározott pontja ír le.
- -
A paraméteres görbe egyenlete a görbén mozgó pont pillanatnyi koordinátáit írja le. A paraméteres görbe deriválásával kapjuk a $v(t)$ sebességvektort, ami minden időpillanatban megadja a görbén mozgó $P$ pont sebességének irányát és nagyságát.
- -
A görbe ívhossza egy differencálható görbe szakaszának a hossza.
- -
Az $r(t)$ paraméteres görbe első deriváltja a görbe érintővektora vagy más néven sebességvektora.
- -
Az $r(t)$ paraméteres görbe második deriváltja a görbe gyorsulásvektora. Ha ezt elosztjuk a saját hosszával, az így keletkező egységnyi hosszú vektor a görbe főnormálisvektora.
- -
Binormálisvektornak nevezzük a görbe sebességvektorával és gyorsulásvektorával alkotott szorzatot.
- -
A $\underline{T}(t)$, $\underline{N}(t)$ és $\underline{B}(t)$ vektorok együttes elnevezése kísérő triéder.
- -
Az $r(t)$ paraméteres görbe második deriváltja a gyorsulást írja le. Ezek a vektorok egy síkot feszítenek ki, ezt a síkot a görbe simulósíkjának nevezzük.
- -
A görbület azt írja le, hogy a simulósíkon belül milyen erősen kanyarodik a görbe. A térgörbék azonban nem csak a simulósíkon belül kanyarodnak, hanem közben ki is csavarodnak abból. Azt, hogy egy térgörbe éppen milyen ütemben csavarodik ki a simulósíkjából, a torzió írja le.
- -
A paraméteres görbe görbülete a görbe egyenestől való eltérését jellemző számérték.
- -
Hogyha a görbének egy $P$ pontjában létezik nem nulla görbülete, akkor azt a kört, amel a $P$-ben érinti a görbét és a görbülete megegyezik a görbe $P$-beli görbületével és a középpontja a görbe konkáv részében található, a görbe $P$ pontbeli simulókörének nevezzük.
- -
A simulókörök középpontjai által kirajzolt alakzatot evolutának hívjuk.
- -
Az ellipszis egy olyan görbe, amely azon pontok mértani helye egy síkon, ahol a pontok két rögzített ponttól mért távolságának összege a két pont távolságánál nagyobb állandó.
- -
A hiperbola azon pontok halmaza, melyeknek két rögzített ponttól való távolságának különbségének abszolút értéke állandó.