Analízis 1 epizód tartalma:
A hatványsorok definíciója nagyon fontos a matematikában és itt elmagyarázzuk úgy, hogy biztosan megértsd. Mik azok a hatványsorok? Hatványsorok konvergenciája, Hatványsorok konvergencis sugara, Konvergencia vizsgálata, Konvergenciasugár, Konvergencia tartomány
Azokat a végtelen sorokat, amelyek így néznek ki, hatványsornak nevezzük:
Itt van például egy hatványsor.
És derítsük ki, hogy mely x-ekre konvergens.
A hatványsoroknál általában a gyök kritérium szokott beválni.
Ha akkor
és itt úgy viselkedik, mint egy konstans, vagyis sajátmagához tart.
A sor akkor konvergens, ha ez kisebb, mint 1.
A sárgával jelölt tartományban helyezkednek el azok az x-ek amelyekre a sor konvergens.
Ezt hívjuk konvergencia-tartománynak.
Az pedig a konvergencia-sugár.
A kérdés, hogy vajon konvergens-e a sor a konvergencia-tartomány végpontjaiban?
Nos, ezt mindig még külön meg kell vizsgálni.
A jelek szerint ez egy Leibniz-sor, tehát konvergens.
Most lássuk a másik végpontot.
Nos, itt a sor divergens.
-t a hatványsor középpontjának nevezzük.
-ban a hatványsor mindig abszolút konvergens.
Az pont sugarú környezetét konvergencia tartománynak nevezzük.
A konvergencia tartomány belső pontjaiban a hatványsor abszolút konvergens, a végpontokat pedig külön kell vizsgálni.
Lássuk mi a helyzet ezzel:
Megint gyök kritérium:
És most jöhetnek a végpontok.
Az ebben a végpontban kapott sor konvergens, sőt abszolút konvergens.
A másik végpontban szintén.
Itt jön aztán egy olyan hatványsor, amire nem lesz jó a gyök kritérium.
Az miatt itt a hányados kritérium lesz a nyerő.
Írhatunk x helyére bármilyen számot, ez mindig teljesülni fog.
A jelek szerint tehát a sor miden x-re konvergens.