Analízis 2
A kurzus 15 szekcióból áll: Határozatlan integrálás, primitív függvény, Határozott integrálás, Paraméteres görbék, Differenciálegyenletek, Izoklinák, Lineáris rekurzió, Laplace transzformáció, Sorok & hatványsorok & Taylor-sorok, Fourier sorok, Mátrixok, vektorok, vektorterek, Lineáris egyenletrendszerek, mátrixok inverze, Determináns, sajátérték, sajátvektor, leképezések, Kétváltozós függvények, Kétváltozós határérték és totális differenciálhatóság, Kettős és hármas integrál
MÁTRIXOK
- Mátrixok - A mátrixok rendkívül barátságosak. Egy nXk-as mátrix tulajdonképpen nem más, mint egy táblázat, aminek n darab sora és k darab oszlopa van.
- Mátrix műveletek - Skalárral szorzás, mátrixok összeadása, mátrixok szorzása..
- Négyzetes és diagonális mátrixok - A négyzetes mátrix azt jelenti, hogy ugyanannyi sora van, mint ahány oszlopa. A diagonális mátrix olyan négyzetes mátrix, aminek a főátlón kívüli elemei nullák.
- Transzponált - A transzponálás tükrözi a mátrixot a főátlóra. Nézzük meg, hogyan.
VEKTOROK
- Skaláris szorzat - A skaláris szorzat két vektor közti művelet, ami csinál belőlük egy számot.
- Vektoriális szorzat - Ez pedig egy olyan szorzás, amely a két vektorból csinál egy harmadik vektort..
- Diadikus szorzat - Két vektor diadikus szorzata egy mátrix. Lássuk milyen..
- Két vektor közti szög - Két vektor által bezárt szög kiszámolása a skaláris szorzat segítségével.
EGY KIS GEOMETRIA
- Az egyenes egyenlete - Az egyenes síkbeli egyenlete és az egyenes térbeli egyenletrendszere.
- A sík egyenlete - Lássuk mi lesz a sík egyenlete - térben.
- Két pont közti vektor - Síkban és térben.
- Két pont távolsága - Síkban és térben.
VEKTORTEREK
- Az axiómák - Végre valami izgalom...
- Koordináták - A valós feletti n dimenziós vektortér jele Rn ahol n a vektorok koordinátáinak számát jelöli.
- Lineárisan független vektorok - Egy vektorrendszer elemei lineárisan függetlenek, ha egyik vektor sem állítható elő a többi segítségével.
- Lineárisan összefüggő vektorok - Egy vektorrendszer elemei lineárisan összefüggők, ha van olyan vektor közöttük, amelyik előállítható a többi vektor segítségével.
- Generátorrendszer - Vektoroknak egy halmaza, amely segítségével minden egyéb vektortérbeli vektor előállítható. Lássuk hogyan.
- Bázis - A lineárisan független generátorrendszer.
- Alterek - W altér V-ben, ha részhalmaza és maga is vektortér a V-beli műveletekre. Nos ez remek, de nézzük meg, mit is jelet mindez.
- Rang - Vektorrendszer rangja és mátrix rangja.
- Gram-Schmidt ortogonalizáció - Egy remek délutáni program, amivel egy bázisból olyan bázist lehet fabrikálni, ahol a bázisvektorok egymásra merőlegesek.
LINEÁRIS EGYENLETRENDSZEREK
- Együttható mátrix - Az egyenletrendszer együtthatóiból álló mátrix.
- Gauss elimináció - Az egyenletrendszer megoldásának egy szuper, de koránt sem a legszuperebb módja.
- Elemi bázistranszformáció - Az egyenletrendszerek megoldásának legszuperebb módja.
- Szabadságfok - A szabad változók száma, amelyeket nem lehet levinni a bázistranszformáció során.
- Rang - A transzformációba bevont változók száma.
- Vektorrendszer rangja - A vektorrendszerben a lineárisan független vektorok maximális száma. Lássuk hogyan számolható ki.
- Végtelen sok megoldás, általános megoldás - Mikor van az egyenletrendszernek végtelen sok megoldása? Az általános megoldás kiszámolása..
- Inverz mátrix nxn-es eset - Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- Inverz mátrix nxk-as eset - Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
A DETERMINÁNS, SAJÁTÉRTÉK, SAJÁTVEKTOR
- A determináns definíciója - A determináns úgy működik, hogy minden négyzetes mátrixból csinál egy valós számot. Hogy miért, és, hogy hogyan, az mindjárt kiderül.
- Sarrus szabály - Egy nem túl jó módszer a determináns kiszámolására.
- A kifejtési tétel - Egy túl jó módszer a determináns kiszámolására.
- Szinguláris és invertálható mátrixok - Azokat a mátrixokat nevezzük szingulárisnak, amelyek determinánsa nulla. Regulárisnak pedig azokat, amelyeknek nem nulla.
- A determináns tulajdonságai - Remek tulajdonságai vannak a determinánsoknak.
- Sajátvektor - Egy mátrix sajátvektora egy olyan nem nullvektor, ami azt tudja, hogy megszorozva a mátrixszal az eredeti vektor skalárszorosát kapjuk. Ez igazán remek, de, hogy pontosan miért, nos ez mindjárt kiderül.
- Sajátérték - Egy mátrix sajátértéke egy valós szám, amely azt mondja meg, hogy a sajátvektor hányszorosát kapjuk akkor, ha azt a mátrixszal szorozzuk.
- Karakterisztikus egyenlet - A sajátértékek kiszámolásához szükséges egyenlet.
- A diagonális alak - Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix diagonális alakját. Lássuk ez miért ilyen roppant fontos.
- Mátrixok definitsége - Hát ez is egy érdekes ügy.
- Kvadratikus alakok - Éjszaka nem ajánlatos összefutni velük az utcán...
- Kvadratikus alakok definitsége - A kvadratikus alakok mátrixa segít eldönteni a definitséget.
LINEÁRIS LEKÉPEZÉSEK
- Lineáris transzformációk és mátrixaik - Egy lineáris transzformáció a V1 és V2 vektorterek közötti leképezés.
- Képtér - A képtér egy olyan altér V2-ben, amely azokból a vektorokból áll, amiket a V1-beli vektorokból csinál a leképezés.
- Magtér - A magtér egy olyan altér V1-ben, amelyek képe a leképezés során nullvektor.
- Dimenzió tétel - A képtér és a magtér dimenzióinak összege éppen V1 dimenziója.
- Transzformáció mátrixa - Minden lineáris leképezés jellemezhető mátrixokkal. Lássuk, hogyan.
- Inverz transzformáció - A transzformáció inverzének mátrixa az eredeti transzformáció mátrix inverze.
- Sajátbázis - Ha a mátrixnak létezik diagonális alakja, akkor van sajátbázisa, ami fantasztikus dolgokra képes.
- A diagonális alak - A diagonális alak előállítása.
- Homomorfizmusok - Na ezek is jó dolgok.
- Hasonló mátrixok - Ha A és B mátrixokra van olyan C mátrix, hogy A=C-1BC akkor azt mondjuk, hogy A és B hasonló mátrixok.
- Origó körüli forgatás mátrixa - A forgatás mátrixa.
- x tengelyre tükrözés mátrixa - Az x tengelyre tükrözés mátrixa.
- Vetítés az x tengelyre - A projekció mátrixa.
INTEGRÁLÁS, PRIMITÍV FÜGGVÉNY
- Határozott és határozatlan integrálás - A határozott integrálással függvények görbéje alatti területeket tudunk kiszámolni, míg a határozatlan integrálással az úgynevezett primitív függvényt tudjuk meghatározni. A kétféle integrálás között a Newton-Leibniz formula létesít kapcsolatot.
- Primitív függvény - Egy f(x) függvény primitív függvénye az a F(x) függvény, amelyet deriválva f(x)-et kapjuk.
- Newton-Leibniz formula - A tétel, amely ezt a kapcsolatot leírja, az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
- Alapintegrálok - Tekintsük át a fontosabb függvények integráljait.
- Integrálási szabályok - Lássuk, milyen integrálási szabályok vannak...
- Szorzatok integrálása - Lássuk, milyen módszerek vannak szorzatok integrálására.
- Törtek integrálása - Lássuk, milyen módszerek vannak törtek integrálására.
- Parciális integrálás - Ezzel a remek módszerrel szorzatokat tudunk integrálni úgy, hogy egy bonyolultabb integrálásból csinálunk egy egyszerűbb integrálást.
- Összetett függvények integrálása - Összetett függvényeket általában akkor tudunk integrálni, ha azok meg vannak szorozva a belső függvényük deriváltjával. Van is erre egy remek kis képlet.
- Helyettesítéses integrálás - Bizonyos esetekben érdemes bevezetni egy helyettesítést, amivel az integrálás egyszerűbbé válik. Nézzük meg, hogyan!
- Parciális törtek - A racionális törtfüggvények integrálásához a függvényeket parciális törtekre kell bontani, majd a parciális törteket egyesével integrálni.
- Racionális törtfüggvények integrálása - A racionális törtfüggvények integrálásához a függvényeket parciális törtekre kell bontani, majd a parciális törteket egyesével integrálni.
- Polinomosztás - A parciális törtekre bontás előtt néha polinomosztás is kell. Nézzük mikor és hogyan.
- Trigonometrikus függvények integrálása - A trigonometrikus kifejezések integrálása meglehetősen vicces feladat. Csak jó humorérzékűeknek ajánlott...
- Tangens x-feles helyettesítés - Az egyik legfontosabb helyettesítéses integrálási módszer elsőfokú trigonometrikus kifejezéseket tartalmazó törtekre.
HATÁROZOTT INTEGRÁLÁS
- Határozott és határozatlan integrálás - A határozott integrálással függvények görbéje alatti területeket tudunk kiszámolni, míg a határozatlan integrálással az úgynevezett primitív függvényt tudjuk meghatározni. A kétféle integrálás között a Newton-Leibniz formula létesít kapcsolatot.
- Primitív függvény - Egy f(x) függvény primitív függvénye az a F(x) függvény, amelyet deriválva f(x)-et kapjuk.
- Newton-Leibniz formula - A tétel, amely ezt a kapcsolatot leírja, az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
- Két függvény közötti terület kiszámolása - Néhány tipikus feladat két függvény grafikonjai által közrezárt terület kiszámítására.
- Improprius integrál - Végtelenbe nyúló tartományok területének kiszámolása.
SOROK
- Mik azok a végtelen sorok? - A bolha ugrásai a számegyenesen.
- Konvergens és divergens sorok - Mikor konvergens és mikor divergens egy sor?
- A mértani sor - A mértani sor képlete, példák mértani sorokra.
- A mértani sor összegképlete - A mértani sorok összegének kiszámolása.
- Konvergenciakritériumok - A sorok konvergenciájának megállapítására vonatkozó képletek.
- Hányados-kritérium - Egy fontos konvergenciakritérium.
- Gyök-kritérium - Egy másik fontos konvergenciakritérium
- Leibniz-sorok - Speciális sorok.
- Összehasonlító kritérium - A majoráns és a minoráns kritérium.
- Sorok összegének kiszámítása - Néhány trükk a sorok összegének meghatározására.
- Teleszkopikus sorok - Olyan sorok, amelyek valójában az első és az utolsó tagon kívül semmilyen más tagot nem tartalmaznak.
- Hatványsorok - A végtelen sorok egy speciális fajtája.
- Konvergenciasugár - A hatványsorok konvergenciájának vizsgálata.
- Konvergencia tartomány - A hatványsorok konvergenciájának vizsgálata.
HATVÁNYSOROK ÉS TAYLOR SOROK
- Taylor Polinom és Taylor sor - Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- Lagrange-féle maradéktag - Próbáljuk meg számológép nélkül kiszámolni 4 tizedesjegy pontossággal, hogy mennyi cos1. Nos erre jó a Lagrange-féle maradéktag.
- Hatványsorok - A végtelen sorok egy speciális fajtája.
- Konvergenciasugár - A hatványsorok konvergenciájának vizsgálata.
- Konvergencia tartomány - A hatványsorok konvergenciájának vizsgálata.
- Hatványsorba fejtés - Bizonyos függvények hatványsora előállítható a mértani sor összegképletének segítségével.
- Binomiális sor - Na ez is marhajó.
FOURER SOROK
- Mik azok a Fourier sorok - A Fourier sorok speciális függvénysorok, amelyeket periodikus függvényekre fejlesztettek ki.
- Fourier együtthatók - A Fourier sorokban szereplő együtthatókat sajna trigonometrikus függvények integrálásával tudjuk kiszámolni, ami néha egyáltalán nem kellemes.
- Fourier sorba fejtés - Lássunk néhány példát a Fourier sor kiszámolására.
- Fourier sor páratlan függvényeknél - Páratlan függvények Fourier sora részletes megoldással.
- Fourier sor páros függvényekre - Ez is nagyon izgalmas lesz...
- Fourier soros feladatok - Néhány izgalmas Fourier soros feladat részletes megoldással.
KÉTVÁLTOZÓS FÜGGVÉNYEK
- Mik azok a kétváltozós függvények? - Néhány elképesztően izgalmas példa kétváltozós függvényekre.
- Lokális szélsőértékek - A kétváltozós függvények minimumai és maximumai olyanok, mint hegycsúcsok és völgyek.
- Nyeregpont - Ez egy speciális pont a kétváltozós függvények felületén, amely bizonyos irányok szerint maximum, míg más irányok mentén minimum.
- Parciális deriválás - A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
- x szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol x-et tekintjük változónak.
- y szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol y-t tekintjük változónak.
- Másodrendű deriváltak - Az első deriváltak tovább deriválása újra parciális deriválással történik. Így négy darab másodrendű deriváltat kapunk. Két tiszta másodrendű deriváltat és két vegyes másodrendű deriváltat.
- Young tétel - A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.
- Stacionárius pont - Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- Hesse mátrix - A másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen nyeregpontja van-e.
- Érintősík - Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ez esetben most egy sík lesz az érintő.
- Az érintősík normálvektora - Az érintősík normálvektora a parciális derivlátakból keletkező vektor, amit gradiensnek vagy másként deriváltvektornak is neveznek.
- Gradiens - A parciális deriváltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
- Deriváltvektor - A parciális derivltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
- Iránymenti derivált - Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.
- Implicit deriválás tétele - Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.
KÉTVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS TOTÁLIS DERIVÁLHATÓSÁGA
- Kétváltozós függvények határértéke - Az egyváltozós függvények határértékének epszilon-deltás definícióját átültetjük a kétváltozós esetre.
- Módszerek a kétváltozós határérték kiszámolására - Megnézünk néhány kétváltozós határértéket és azt, hogy hogyan számoljuk ki őket.
- A totális differenciálhatóság - Hogyan vihető át a deriválás szemléletes jelentése egyváltozós függvényekről kétváltozós függvényekre?
- Parciális deriválás - A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
- x szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol x-et tekintjük változónak.
- y szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol y-t tekintjük változónak.
- Érintősík - Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ez esetben most egy sík lesz az érintő.
- Az érintősík normálvektora - Az érintősík normálvektora a parciális deriváltakból keletkező vektor, amit gradiensnek vagy másként deriváltvektornak is neveznek.
KETTŐS ÉS HÁRMAS INTEGRÁL
- A kettősintegrál - A kettősintegrál kétváltozós függvények által meghatározott felületek alatt elhelyezkedő térfogatok kiszámolására valók.
- Példák kettősintegrálra - Néhány feladat kettősintegrálok kiszámolására.
- x és y szerinti integrálás - A parciális deriválás megfordításaként először x majd y szerint integrálunk.
- Kettősintegrál normáltartományokon - Integrálás függvények által határolt tartományok felett.
- Az integrálás sorrendjének felcserélése - Vannak olyan esetek, amikor nem segít más, mint felcserélni az integrálás sorrendjét.
- Polárkoordináták - Az x és y hagyományos koordináták helyett egy pontot azzal jellemeznek, hogy milyen távol van az origótól és mekkora annak a szakasznak a forgás-szöge, amely az origóból a pontba vezet.
- Polárkoordinátás helyettesítés - Bizonyos kettősintegrálok kiszámolását megkönnyíti, ha inkább polárkoordinátákat használunk.
- A hármas integrál - Na itt már egy testen integrálunk négydimenziós függvényeket...
- Hengerkoordináták - A síkbeli polárkoordináták egyik térbeli kiterjesztése - de nem az igazi...
- Gömbi koordináták - A síkbeli polárkoordináták egy másik térbeli kiterjesztése - na ez az igazi...
DIFFERENCIÁLEGYENLETEK
- Mese a differenciálegyenletekről - A differenciálegyenletek olyan egyenletek, amelyben az ismeretlenek függvények. Nos ez írtó izgi lesz...
- A differenciálegyenlet rendje - Azt mondja meg, hogy az ismeretlen függvény maximum hanyadik deriváltja szerepel az egyenletben.
- A differenciálegyenlet linearitása - Na ez egy határozottan jó tulajdonság, ami megkönnyíti az életünket.
- A differenciálegyenletek típusai - Készítünk egy listát a főbb típusokról, majd elkezdjük sorra venni a megoldási módszereket.
- Szeparábilis differenciálegyenlet - A legegyszerűbb típus, amin érdemes gyakorlatozni, hogy a bonyolultabb típusok megoldása előtt legyen egy kis rutin.
- Homogén fokszámú differenciálegyenlet - Na ez egy érdekes és kicsit speciális állatfajta, de tanulságos.
- Egzakt differenciálegyenlet - A differenciálegyenletek második fő típusa, sok helyen nincs benne a tananyagban.
- Integráló tényező - Vannak olyan egyenletek, amelyek ugyan nem egzaktak, de egy ügyes trükk segítségével egzakttá tehetők. Itt jön a trükk...
- Elsőrendű lineáris differenciálegyenlet - Az egyik legfontosabb típus az y'+Py=Q alakú differenciálegyenlet, amelyre egy részletes megoldási tervet adunk.
- A v(x) függvény - Az y'+Py=Q alakú elsőrendű lineáris differenciálegyenlet egyik megoldási módszerében szereplő függvény.
- Lagrange szorzó - Az elsőrendű lineáris differenciálegyenlet egyik megoldási módszerében szereplő v(x) függvény.
- Elsőrendű állandó együtthatós lineáris differenciálegyenlet - Egy speciális típus az y'+ay=Q alakú differenciálegyenlet, amelyet a próbafüggvény módszerrel oldunk meg.
- A próbafüggvény módszer - Egy olyan megoldási módszer, ahol a homogén egyenlet megoldása után a partikuláris megoldást határozatlan együtthatókkal keressük.
- Rezonancia elsőrendű egyenleteknél - Ez olyankor van, ha a homogén megoldás és a partikuláris megoldás hasonlít egymásra. Lássuk mit is jelent ez...
- Homogén egyenlet - Azokat az egyenleteket nevezzük homogénnek, ahol nincs az ismeretlen függvényt tartalmazótól különböző tag. y"+ay'+by=0 alakú esetekkel fogunk foglalkozni.
- Homogén megoldás - A homogén egyenlet megoldása.
- Parikuláris megoldás - Az úgynevezett zavaró függvény alapján létrejövő megoldás, amit például a próbafüggvény módszer segítségével kaphatunk meg.
- Másodrendű állandó együtthatós lineáris differenciálegyenlet - Egy speciális típus az y"+ay'+by=Q alakú differenciálegyenlet, amelyet a próbafüggvény módszerrel oldunk meg.
- Rezonancia másodrendű egyenleteknél - Ez olyankor van, ha a homogén megoldás és a partikuláris megoldás hasonlít egymásra. Lássuk mit is jelent ez...
LAPLACE TRANSZFORMÁCIÓ
- A Laplace transzformált kiszámolása - Hát ez egy elég rémes improprius integrálás, de azért kimondottan hasznos, tehát megér egy megnézést...
- Néhány függvény Laplace transzformáltja - Kiszámoljuk pár nevezetes függvény Laplace transzformáltját.
- Összeg és szorzat Laplace transzformáltja - Megnézzük hogyan viselkedik a Laplace transzformált összegeknél és szorzatoknál.
- Laplace transzformált táblázat - Fontosabb függvények Laplace transzformáltjai.
- Differenciálegyenletek megoldása Laplace transzformációval - Ez egy remek kis módszer az állandó együtthatós differenciálegyenletek megoldására.
- Inverz Laplace transzformáció - Ez a Laplace transzformált vissza-iránya, ami a differenciálegyenletek megoldásának a végén tartogat izgalmakat.
- Elsőrendű differenciálegyenletek megoldása Laplace transzformációval - Ez egy remek kis módszer az állandó együtthatós elsőrendű differenciálegyenletek megoldására.
- Másodrendű differenciálegyenletek megoldása Laplace transzformációval - Ez egy remek kis módszer az állandó együtthatós másodrendű differenciálegyenletek megoldására.
Határozatlan integrálás, primitív függvény
- -
Az f(x) függvény primitív függvényének jele F(x) és azt tudja, hogy ha deriváljuk, akkor visszakapjuk f(x)-et. Egy függvény primitív függvényeinek halmazát nevezzük a függvény határozatlan integráljának.
- -
Polinomok integrálása. Törtfüggvény integrálása. Exponenciális függvények integrálása. Trigonometrikus függvények integrálása.
- -
Polinomok, törtfüggvény, exponenciális függvények, trigonometrikus függvények integráljainak lineáris helyettesítései.
- -
Integráláskor a konstans szorzó kivihető.
- -
Összeget külön-külön is integrálhatunk.
- -
Ha a szorzás elvégezhető, akkor végezzük el, és utána integráljunk.
- -
Szorzat integrálásának egy speciális esete, amikor a függvény n-edik hatványon van és meg van szorozva a deriváltjával.
- -
Ezzel a remek módszerrel szorzatokat tudunk integrálni úgy, hogy egy bonyolultabb integrálásból csinálunk egy egyszerűbb integrálást.
- -
Összetett függvényeket általában akkor tudunk integrálni, ha azok meg vannak szorozva a belső függvényük deriváltjával. Van is erre egy remek kis képlet.
- -
Próbálkozzunk a tört földarabolásával és utána integráljunk.
- -
Törtek integrálásának egy speciális esete, amikor a tört számlálója a nevező deriváltja.
- -
A helyettesítéses integrálás lényege, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk majd megoldani a feladatot.
- -
A helyettesítéses integrálás lényege, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk majd megoldani a feladatot.
- -
A helyettesítéses integrálás úgy működik, hogy egy kifejezést $u$-val helyettesítünk annak reményében, hogy hátha így képesek leszünk megoldani a feladatot.
A helyettesítéses integrálás egyik legfurcsább esete az $u = \tan{ \frac{x}{2} } $. Olyankor használjuk, ha a törtben $\sin{x}$ és $\cos{x}$ is csak első fokon szerepel.
- -
A racionális törtfüggvények integrálásához a függvényeket parciális törtekre kell bontani, majd a parciális törteket egyesével integrálni.
Határozott integrálás
- -
A Newton-Leibniz formula egy egyszerűen használható képlet a határozott integrál kiszámításához. Ez a tétel az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
- -
Egy zárt intervallumon értelmezett függvény akkor Riemann integrálható, ha egyetlen olyan szám létezik, amely bármely alsó közelítő összegénél nagyobb egyenlő, és bármely felső közelítő összegénél kisebb egyenlő.
- -
Végtelenbe nyúló tartományok területének kiszámolása egy fontos függvénnyel.
- -
Forgástestek térfogatának és felszínének képletei határozott integrálással.
Paraméteres görbék
- -
A ciklois egy olyan görbe, amelyet egy irányított görbén csúszás nélkül legördülő kör egy meghatározott pontja ír le.
- -
A paraméteres görbe egyenlete a görbén mozgó pont pillanatnyi koordinátáit írja le. A paraméteres görbe deriválásával kapjuk a $v(t)$ sebességvektort, ami minden időpillanatban megadja a görbén mozgó $P$ pont sebességének irányát és nagyságát.
- -
A görbe ívhossza egy differencálható görbe szakaszának a hossza.
- -
Az $r(t)$ paraméteres görbe első deriváltja a görbe érintővektora vagy más néven sebességvektora.
- -
Az $r(t)$ paraméteres görbe második deriváltja a görbe gyorsulásvektora. Ha ezt elosztjuk a saját hosszával, az így keletkező egységnyi hosszú vektor a görbe főnormálisvektora.
- -
Binormálisvektornak nevezzük a görbe sebességvektorával és gyorsulásvektorával alkotott szorzatot.
- -
A $\underline{T}(t)$, $\underline{N}(t)$ és $\underline{B}(t)$ vektorok együttes elnevezése kísérő triéder.
- -
Az $r(t)$ paraméteres görbe második deriváltja a gyorsulást írja le. Ezek a vektorok egy síkot feszítenek ki, ezt a síkot a görbe simulósíkjának nevezzük.
- -
A görbület azt írja le, hogy a simulósíkon belül milyen erősen kanyarodik a görbe. A térgörbék azonban nem csak a simulósíkon belül kanyarodnak, hanem közben ki is csavarodnak abból. Azt, hogy egy térgörbe éppen milyen ütemben csavarodik ki a simulósíkjából, a torzió írja le.
- -
A paraméteres görbe görbülete a görbe egyenestől való eltérését jellemző számérték.
- -
Hogyha a görbének egy $P$ pontjában létezik nem nulla görbülete, akkor azt a kört, amel a $P$-ben érinti a görbét és a görbülete megegyezik a görbe $P$-beli görbületével és a középpontja a görbe konkáv részében található, a görbe $P$ pontbeli simulókörének nevezzük.
- -
A simulókörök középpontjai által kirajzolt alakzatot evolutának hívjuk.
- -
Az ellipszis egy olyan görbe, amely azon pontok mértani helye egy síkon, ahol a pontok két rögzített ponttól mért távolságának összege a két pont távolságánál nagyobb állandó.
- -
A hiperbola azon pontok halmaza, melyeknek két rögzített ponttól való távolságának különbségének abszolút értéke állandó.
Differenciálegyenletek
- -
A differenciálegyenletek olyan egyenletek, amiben az ismeretlenek függvények. Az egyenletben ezeknek a függvényeknek a különböző deriváltjai és hatványai szerepelnek.
- -
Azt mondja meg, hogy az ismeretlen függvény maximum hanyadik deriváltja szerepel az egyenletben.
- -
Ha az ismeretlen függvény és deriváltjai csak első fokon szerepelnek a differenciálegyenletben, akkor az egyenlet lineáris.
- -
Olyan differenciálegyenlet, amelyet az egyenlet szétválasztásával és a két rész külön-külön integrálásával lehet megoldani
- -
Egy differenciálegyenlet homogén fokszámú, ha $y=ux$ helyettesítés után minden $x$-es tag kitevője megegyezik.
- -
A differenciálegyenletek második fő típusa, sok helyen nincs benne a tananyagban.
- -
annak olyan egyenletek, amelyek ugyan nem egzaktak, de egy ügyes trükk segítségével egzakttá tehetők. Itt jön a trükk...
- -
Az egyik legfontosabb típus az y'+Py=Q alakú differenciálegyenlet, amelyre egy részletes megoldási tervet adunk.
- -
A konstans variálás módszere egy megoldási módszer az elsőrendű lineáris differenciálegyenletekhez.
- -
Az elsőrendű lineáris állandó együtthatós differenciálegyenlet egy speciális esete a lineáris elsőrendű egyenleteknek. Azért hívják állandó együtthatósnak, mert a $P(x)$ függvény ilyenkor valamilyen konstans, mondjuk $a$.
- -
Ez olyankor van, ha a homogén megoldás és a partikuláris megoldás hasonlít egymásra. Lássuk mit is jelent ez...
- -
A másodrendű lineáris állandó együtthatós homogén differenciálegyenlet általános alakja: $ay'' + by' + cy = 0 $. Megoldásához a karakterisztikus egyenletet használjuk.
- -
A másodrendű lineáris állandó együtthatós inhomogén differenciálegyenlet általános alakja: $ay'' + by' + cy = Q(x) $. A homogén megoldást megkapjuk a karakterisztikus egyenlet segítségével, a partikuláris megoldást pedig a próbafüggvény módszerrel végezzük.
Izoklinák
- -
Azon pontok halmazát, melyekben a megoldásfüggvények meredeksége egy adott számmal egyenlő, a differenciálegyenlet izoklinájának nevezzük.
Laplace transzformáció
- -
Hát ez egy elég rémes improprius integrálás, de azért kimondottan hasznos, tehát megér egy megnézést...
- -
Kiszámoljuk pár nevezetes függvény Laplace transzformáltját.
- -
Ez a Laplace transzformált vissza-iránya, ami a differenciálegyenletek megoldásának a végén tartogat izgalmakat.
Sorok & hatványsorok & Taylor-sorok
- -
A mértani sor képlete, példák mértani sorokra.
- -
Egy végtelen sor akkor konvergens, ha részletösszegsorozata konvergens.
- -
Ha egy sorozat határértéke nem 0, akkor a belőle képzett sor divergens.
- -
Speciális sorok.
- -
Egy másik fontos konvergenciakritérium, ami az n-edik tag n-edik gyökének segítségével dönti el a konvergenciát.
- -
Egy fontos konvergenciakritérium, amely az n+1-edik tag és az n-edik tag hányadosával dönti el a konvergenciát.
- -
Speciális sorok.
- -
A sorok konvergenciájának megállapítására vonatkozó képletek.
- -
Tört hatványának sorának konvergenciája a hatványkitevőtől függően.
- -
Olyan sorok, amelyek valójában az első és az utolsó tagon kívül semmilyen más tagot nem tartalmaznak.
- -
Ha $x_0$ a hatványsor középpontja, akkor az $x_0$ pont $r$ sugarú környezetét konvergencia tartománynak nevezzük, ahol $r$ a konvergenciasugár.
- -
A hatványsorok konvergenciájának vizsgálata.
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Arra való, hogy különböző függvényeket polinomok segítségével közelítsünk, illetve előállítsuk hatványsorukat. Nagyon izgi - tényleg...
- -
Az $e^x$, lnx, sinx és cosx függvények Taylor sorai.
- -
Ha $x_0$ a hatványsor középpontja, akkor az $x_0$ pont $r$ sugarú környezetét konvergencia tartománynak nevezzük, ahol $r$ a konvergenciasugár.
- -
A hatványsorok konvergenciájának vizsgálata.
- -
Amikor egy függvény x helyen lévő értékét szeretnénk közelíteni egy Taylor polinommal, akkor lesz egy kis hibánk, mivel a polinom nem teljesen követi a függvényt. Ennek a hibának a kifejezésére van a Lagrange-féle maradéktag.
- -
A végtelen sorok egy speciális fajtája.
Fourier sorok
- -
A Fourier sorok speciális függvénysorok, amelyeket periodikus függvényekre fejlesztettek ki.
Mátrixok, vektorok, vektorterek
- -
- -
Ha egy mátrixot egy számmal szorzunk, akkor a mátrix összes elemét meg kell szorozni a számmal.
- -
Ha egy mátrixot osztunk egy számmal, akkor a mátrix minden elemét osztani kell a számmal.
- -
Két mátrix összeadásakor összeadjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet összeadni, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix kivonásakor kivonjuk az ugyanazon pozícióban lévő elemeket. Két mátrixot csak akkor lehet kivonni egymásból, ha ugyanannyi soruk és oszlopuk van.
- -
Két mátrix szorzata akkor létezik, ha a bal oldali mátrix oszlopainak száma megegyezik a jobb oldali mátrix sorainak számával. Az eredménymátrix i-edik sorának j-edik elemét úgy kapjuk, hogy a bal oldali mátrix i-edik sorát skalárisan szorozzuk a jobb oldali mátrix j-edik oszlopával. (Tehát az első elemet az elsővel, a másodikat a másodikkal stb. szorozzuk, majd összeadjuk)
- -
A mátrix összeadás kommutatív és asszociatív.
- -
A mátrixszorzás nem kommutattív, de asszociatív.
- -
A kvadratikus mátrix négyzetes mátrix vagyis ugyanannyi sora van, mint oszlopa.
- -
A diagonális mátrix olyan kvadratikus mátrix, aminek a főátlóján kívüli elemek nullák.
- -
Az egységmátrixok olyan diagonális mátrixok, aminek minden főátló-eleme egy.
- -
Az inverz mátrix egy olyan mátrix, hogy ha azzal szorozzuk az eredeti mátrixot, akkor egységmátrixot kapunk. Ha balról szorozva kapunk egységmátrixot, akkor bal inverz, ha jobbról szorozva, akkor jobb inverz mátrix.
- -
A transzponált a mátrix sorainak és oszlopainak felcserélése.
- -
Azokat a mátrixokat, melyek transzponáltjuk önmaga, szimmetrikus mátrixnak nevezzük.
- -
Vektort egy számmal úgy szorzunk, hogy a vektor minden koordinátáját megszorozzuk a számmal.
- -
Vektort egy számmal úgy osztunk, hogy a vektor minden koordinátáját leosztjuk a számmal.
- -
Két vektort úgy adunk össze, hogy minden egyes koordinátájukat külön-külön össze adjuk.
- -
Két vektort úgy vonunk ki egymásból, hogy minden egyes koordinátájukat külön-külön kivonjuk egymásból.
- -
A skaláris szorzat két vektor közti művelet, ami csinál belőlük egy számot.
- -
Két vektor diadikus szorzata egy mátrix. Lássuk milyen.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak sorait.
- -
Egy olyan vektor, amivel beszorozva a mátrixunkat, összeadja annak egy oszlopában lévő elemeit.
- -
Ha egy mátrixot megszorzunk jobbról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik oszlopát.
- -
Ha egy mátrixot megszorzunk balról egy $\underline{e}_i$ egységvektorral, akkor megkapjuk a mátrix i-edik sorát.
- -
Az egyenes egyenletének felírásához kell egy pontja és egy normálvektora.
- -
A sík egyenletének felírásához kell egy pontja és egy normálvektora.
- -
Két pont közti vektort a vektorok koordinátáinak különbségével írhatunk fel.
- -
Két pont távolsága gyök alatt a koordináták különbségeinek négyzetösszege.
- -
Az egyenes egyenletének felírásához a síkban szükségünk van az egyenes egy pontjára és a normálvektorára.
- -
A sík egyenletének felírásához kell a sík egy pontja és a normálvektora.
- -
Két vektor vektoriális szorzatát egy 3x3-as mátrix determinánsával számíthatjuk ki, ahol a mátrix első sora egységvektorok, a második és harmadik sora pedig az a és b vektorok.
- -
Két vektor vektoriális szorzata egy olyan harmadik vektort ad, ami merőleges a két vektor által kifeszített síkra.
- -
A vektorösszeadás kommutatív, asszociatív, létezik nullelem és létezik ellentett. A skalárszoros asszociatív, disztributív a vektorokra és a skalárokra is, és létezik egységszeres.
- -
Egy vektorrendszer akkor lineárisan független, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.
- -
Egy vektorrendszer akkor lineárisan összefüggő, ha a vektorok lineáris kombinációjaként a nullvektor úgy is elő tud állni, hogy nem minden szorzótényező 0.
- -
Vektorok generátor-rendszert alkotnak, ha minden vektortérbeli vektor elő áll az ő lineáris kombinációjuként.
- -
Egy vektorrendszer akkor alkot független rendszert, ha a vektorok lineáris kombinációjaként a nullvektor csak úgy áll elő, ha minden szorzótényező 0.
- -
A bázis független generátorrendszer.
- -
Egy vektorrendszer rangja a benne lévő független vektorok maximális száma
- -
W altér V-ben, ha részhalmaza és maga is vektortér a V-beli műveletekre. Nos ez remek, de nézzük meg, mit is jelet mindez.
- -
Egy vektor akkor állítható egy vektorrendszerrel, ha előáll azon vektorok lineáris kombinációjaként.
Lineáris egyenletrendszerek, mátrixok inverze
- -
Egy egyenletrendszer együtthatómátrixa az x-ek együtthatóiból álló mátrix.
- -
Az egyenletrendszer megoldásának egy szuper, de koránt sem a legszuperebb módja.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Az egyenletrendszerek megoldásának legszuperebb módja.
- -
Ha egy egyenletrendszernek több az ismeretlene, mint ahány egyenlete van, akkor az egyenletrendszernek nincs egyértelmű megoldása.
- -
Ha egy egyenletrendszerben két olyan egyenlet szerepel, ahol az ismeretlenek együtthatói megegyeznek, de más az eredményük, akkor az ellentmondó egyenletrendszer, aminek nincs megoldása.
- -
A szabadságfok a szabadváltozók száma.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Lássuk hogyan kell kiszámolni mátrixok inverzét. Kezdjük az nxn-es mátrixokkal.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
- -
Most pedig olyan mátrixok inverzét próbáljuk meg kiszámolni, amelyek nem négyzetesek.
Determináns, sajátérték, sajátvektor, leképezések
- -
A determináns úgy működik, hogy minden négyzetes mátrixból csinál egy valós számot. Hogy miért, és, hogy hogyan, az mindjárt kiderül.
- -
Egy 2x2-es mátrix determinánsát úgy kapjuk, hogy a bal átló elemeinek szorzatából kivonjuk a jobb átló elemeinek szorzatát.
- -
Egy nem túl jó módszer a determináns kiszámolására.
- -
Egy túl jó módszer a determináns kiszámolására.
- -
Példák mikor nulla egy mátrix determinánsa. Két mátrix szorzatának determinánsa.
- -
Azokat a mátrixokat nevezzük szingulárisnak, amelyek determinánsa nulla.
- -
Azokat a mátrixokat nevezzük regulárisnak, amelyek determinánsa nem nulla.
- -
A Cramer szabály egy újabb módszer az egyenletrendszerek megoldására.
- -
Egy mátrix sajátértéke egy valós szám, amely azt mondja meg, hogy a sajátvektor hányszorosát kapjuk akkor, ha azt a mátrixszal szorozzuk.
- -
Egy mátrix sajátvektora egy olyan nem nullvektor, ami azt tudja, hogy megszorozva a mátrixszal az eredeti vektor skalárszorosát kapjuk. Ez igazán remek, de, hogy pontosan miért, nos ez mindjárt kiderül.
- -
A sajátértékek kiszámolásához szükséges egyenlet.
- -
A mátrix főátló elemeiből kivonunk $\lambda$-kat, majd ennek vesszük a determinánsát.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix diagonális alakját. Lássuk ez miért ilyen roppant fontos.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix spektrálfelbontását.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor a mátrix diagonizálható.
- -
A sajátfelbontás egy olyan, kizárólag diagonalizálható mátrixokkal végezhető felbontás, ami megkönnyíti a hatványozást.
- -
A spektrálfelbontás segítségével könnyebben hatványozhatunk.
- -
Egy mátrix sarok főminor mátrixai a mátrix bal felső sarkától kezdődő sarok mátrixok determinánsai.
- -
Egy mátrix főminor mátrixai a mátrix bal felső sarkától kezdődő sarok mátrixok determinánsai.
- -
Egy nxn-es mátrix pozitív definit, ha minden sajátértéke pozitív.
- -
Egy nxn-es mátrix negatív definit, ha minden sajátértéke negatív.
- -
Egy nxn-es mátrix pozitív szemidefinit, ha minden sajátértéke nagyobb vagy egyenlő 0.
- -
Egy nxn-es mátrix negatív szemidefinit, ha minden sajátértéke kisebb vagy egyenlő 0.
- -
Egy nxn-es mátrix indefinit, ha van nullánál nagyobb és nullánál kisebb sajátértéke is..
- -
Éjszaka nem ajánlatos összefutni velük az utcán...
- -
A kvadratikus alakok mátrixa segít eldönteni a definitséget.
- -
A lineáris leképezés egy test feletti vektorterek között ható művelettartó függvény.
- -
A képtér egy olyan altér $V_2$-ben, amely azokból a vektorokból áll, amiket a $V_1$-beli vektorokból csinál a leképezés.
- -
A magtér egy olyan altér $V_1$-ben, amelyek képe a leképezés során nullvektor.
- -
A képtér és a magtér dimenzióinak összege éppen $V_1$ dimenziója.
- -
Minden lineáris leképezést jellemezhetünk egy mátrixszal.
- -
Egy leképezésnek akkor létezik inverze, ha a leképezés mátrixának létezik inverze.
- -
Két leképezés kompozíciója a mátrixaik szorzata.
- -
Ha egy nxn-es mátrixnak van n darab független sajátvektora, akkor képesek vagyunk előállítani a mátrix diagonális alakját. Lássuk ez miért ilyen roppant fontos.
- -
Ha a mátrixnak létezik diagonális alakja, akkor van sajátbázisa, ami fantasztikus dolgokra képes.
- -
A lineáris leképezések másnéven homomorfizmusok. Ezek a homomorfizmusok és azok mátrixai maguk is egy vektorteret alkotnak, ezt a vektorteret $Hom(V_1, V_2)$-nek nevezzük.
- -
Az A és B mátrixok hasonlók, ha létezik egy C mátrix, amivel ha jobbról szorozzuk a B-t, balról pedig a C inverzével szorozzuk, akkor ennek eredménye A.
Kétváltozós függvények
- -
A kétváltozós függvények úgy működnek, hogy két valós számhoz rendelnek hozzá egy harmadik valós számot.
- -
A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.
- -
A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
- -
Egy általános módszer, amivel kétváltozós függvények szélsőértékeit és nyeregpontjait lehet meghatározni
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- -
Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
- -
másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen nyeregpontja van-e.
- -
A sík azon pontjainak összességét, amelyekben az $f$ függvény ugyanazt a konstans értéket veszi fel, az $f$ függvény szintvonalának nevezzük.
- -
Az egyváltozós függvények mintájára bevezetjük az érintő fogalmát. Ez esetben most egy sík lesz az érintő.
- -
A parciális deriváltakból keletkező vektort gradiensnek vagy másként deriváltvektornak neveznek.
- -
Azt mondja meg, hogy egy adott irányban haladva milyen meredeken emelkedik a felület. Nagyon érdekes. Az iránymenti derivált nagyon érdekes.
- -
Egy függvény akkor implicit, ha $y$ nincs kifejezve, vagyis nem $y=\dots$ alakú.
- -
Megismerkedünk az implicit függvényekkel, és ha már megismerkedtünk, nézzük meg, hogyan lehet deriválni őket.
Kétváltozós határérték és totális differenciálhatóság
- -
Az egyváltozós függvények határértékének epszilon-deltás definícióját átültetjük a kétváltozós esetre.
- -
Hogyan vihető át a deriválás szemléletes jelentése egyváltozós függvényekről kétváltozós függvényekre?
- -
A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
Kettős és hármas integrál
- -
A kétváltozós függvények határozott integrálja egy test térfogata.
- -
A kettősintegrálok segítségével különböző felületek alatti térfogatokat tudunk kiszámolni. A legegyszerűbb eset, amikor egy téglalapon integrálunk. Ilyenkor az integrálás határai valamilyen számok.
- -
Bizonyos kettősintegrálok kiszámolását megkönnyíti, ha inkább polárkoordinátákat használunk.
- -
Na itt már egy testen integrálunk négydimenziós függvényeket...
- -
A síkbeli polárkoordináták egyik térbeli kiterjesztése - de nem az igazi...
- -
A polárkoordináták háromdimenziós változatát gömbi koordinátáknak nevezzük. A régi x, y, z koordinátákat új gömbi koordinátákkal helyettesítjük.