Faktorizáció | mateking
 

Analízis 1 epizód tartalma:

Polinomok szorzattá alakítása, Algebra alaptétele, Polinomok elsőfokú tényezőkre bontása komplexben, Negatív diszkriminánsú másodfokú egyenletek megoldása.

A képsor tartalma

Van itt egy ilyen… nos egy polinom, és próbáljuk meg felbontani elsőfokú tényezők szorzatára.

Épp itt jön ez az azonosság:

Most próbáljuk meg szorzattá alakítani ezt:

Olyan azonosság nincs, hogy

ezért megpróbáljuk itt is az előzőt használni egy kis bűvészkedéssel.

Lássunk most egy bonyolultabbat.

A komplex számok egyik jelentős haszna, hogy a segítségükkel minden polinom felbontható elsőfokú tényezők szorzatára.

Ezt nevezik az algebra alaptételének.

Most pedig oldjunk meg néhány, korábban reménytelennek hitt másodfokú egyenletet.

Itt jön a megoldóképlet:

Egy komplex szám abszolútértéke a nullától való távolsága.

Ezt a távolságot egy Pitagorasz-tétel segítségével tudjuk kiszámolni.

Nézzünk meg még egyet.

A megoldóképlet helyett itt megpróbálunk szorzattá alakítani.

Most pedig lássuk mire jók még ezek a komplex számok.

Egy lépésre vagy attól, hogy a matek melléd álljon és ne eléd.
  • Jó árban van és hihetetlenül világos a magyarázat és annyiszor lehet visszatérni az egyes lépésekre, ahányszor arra csak szükség van a megértéshez.

    Lili, 22
  • Felsőbb éves egyetemisták ajánlották, "kötelező" címszóval.
    Ricsi, 19
  • Konkrétan a hetedikes öcsém megtanult deriválni, ez elég bizonyíték, hogy az oldal érthetően magyaráz.

    Gábor, 18
  • Nem találsz külön tanárt? Ne is keress! Irány a mateking!!!!

    Bori, 19
BelépekvagyRegisztrálok Back arrow Ugrás az
összeshez