Analízis 1 epizód tartalma:

Halmazok a komplex számsíon, Komplex számok abszolútértéke, Komplex számok geometriai jellemzése, Komplex számok és egyenlőtlenségek.

A képsor tartalma

Próbáljuk meg ábrázolni a komplex számsíkon azokat a komplex számokat, amelyekre:

Az algebrai alakot használjuk,

vagyis

És most pedig koordinátageometriai rémtörténetek következnek.

Az

egy origó középpontú és r sugarú kör egyenlete.

Ez alapján az szintén egy kör, aminek a középpontja az origó és sugara r=2.

Az pedig azt jelenti, hogy a kör és a belseje.

Koordinátageometriai rémtörténetek:

Az egyenes egyenlete:

A kör egyenlete:

Lássuk hol helyezkednek el a komplex számsíkon azok a komplex számok, amelyekre:

Az algebrai alakot használjuk, vagyis mindenhol z helyére

azt írjuk, hogy

Az egyenlőtlenség az egyenes valamelyik oldalát jelenti.

Nézzük meg melyiket.

Mindig úgy érdemes kísérletezni, hogy a=0 és b=0.

Ez úgy tűnik stimmel, tehát az egyenesnek ez az oldala kell.

Nézzük aztán, mi a helyzet ezzel:

Az egyenlőtlenség a körvonal valamelyik oldalát jelenti.

Vagy a kör belsejét vagy a kör külsejét.

Most is úgy érdemes kísérletezni, hogy a=0 és b=0.

Úgy tűnik, a külseje kell.

És mivel az egyenlőség nincs megengedve,

ezért a körvonal nem tartozik hozzá a tartományhoz.

Végül lássuk mit tud ez:

Szükség lesz egy kis teljes négyzetté kiegészítésre.

 

A komplex számok abszolútértéke, halmazok a komplex számsíkon

04
hang
Hopsz, úgy tűnik nem vagy belépve, pedig itt olyan érdekes dolgokat találsz, mint például:

Halmazok a komplex számsíon, Komplex számok abszolútértéke, Komplex számok geometriai jellemzése, Komplex számok és egyenlőtlenségek.

Végül is miért ne néznél meg
még egy epizódot?
Ugrás az
összeshez

Hozzászólások

Még nincs hozzászólás. Legyél Te az első!