- Mátrixok és vektorok
- Egy kis geometria
- Vektorterek, független és összefüggő vektorok
- Lineáris egyenletrendszerek, mátrixok rangja és inverze
- Determináns, adjungált, kvadratikus alakok
- Sajátérték, sajátvektor, sajátfelbontás
- Lineáris leképezések
- Síkbeli és térbeli leképezések és mátrixaik
- Egyenletrendszerek optimális megoldása, pszeudoinverz
- Vektornorma, mátrixnorma, mátrixok kondíciószáma
- Ortogonális mátrixok, Fourier-együtthatók, Gram-Schmidt ortogonalizáció
- Mátrixok LU-felbontása és QR-felbontása
- Iterációs módszerek egyenletrendszerek megoldására
- Komplex számok
- Polinomok
- Interpolációs polinomok
- Oszthatóság
- Euklideszi algoritmus, Diofantoszi egyenletek
- Kongruenciák, Euler-Fermat tétel
- Csoportok, gyűrűk, testek
Polinomok
1.
Reducibilisek vagy irreducibilisek-e az alábbi polinomok $Q$ illetve $R$ felett?
a) \( P(x)=x^2-9 \)
b) \( P(x)=x^2-9 \)
c) \( P(x)=x^2-2 \)
3.
Végezzük el az alábbi polinomosztásokat.
a) \( \frac{x^5-3x^4+9x^3+7x^2+5x+9}{x^4-4x^3+9x^2} \)
b) \( \frac{x^4-5x^3+7x^2+5x-24}{x-3} \)
c) \( \frac{2x^4+5x^2+6}{x^2+x+1} \)
6.
Oldjuk meg az alábbi egyenletet a Cardano képlet segítségével.
\( x^3-4x=0 \)
8.
Alakítsuk szorzattá a $p(x)=x^4+4x^3+3x^2-x-1$ polinomot, ha tudjuk, hogy az egyik gyöke $-1$.
9.
Bontsuk elsőfokú tényezők szorzatára a a következő kifejezést:
\( p(x)=x^3-4x^2+x+6 \)
10.
Bontsuk elsőfokú tényezők szorzatára a következő kifejezést:
\( p(x) = x^3+4x^2+6x+4 \)
A témakör tartalma
Test feletti polinomok, az algebra alaptétele
Polinomok szorzattá alakítása
Polinomosztás
Polinomok racionális gyökének keresése
A harmadfokú egyenlet megoldása
A Cardano képlet
Az általános harmadfokú egyenlet
FELADAT
FELADAT
FELADAT